Upward-Pointing Cosmic-Ray-like Events Observed with ANITA

A. Romero-Wolf
Jet Propulsion Laboratory,
California Institute of Technology
for the ANITA Collaboration,
in collaboration with
J. Alvarez-Muñiz, W. Carvalho Jr., H. Schoorlemmer & E. Zas

Extensive Air Showers with ANITA

ANITA detection channels are clearly distinguished by pointing, pulse spectrum, polarity, and polarization.

<table>
<thead>
<tr>
<th>Origin</th>
<th>RF production</th>
<th>Polarization</th>
<th>RF Direction</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Neutrinos</td>
<td>Askaryan</td>
<td>V-pol</td>
<td>Below Horizon</td>
<td>Normal</td>
</tr>
<tr>
<td>2) CR-reflected</td>
<td>Geo-synchrotron</td>
<td>H-pol</td>
<td>Below Horizon</td>
<td>Inverted</td>
</tr>
<tr>
<td>3) CR-direct</td>
<td>Geo-synchrotron</td>
<td>H-pol</td>
<td>Above Horizon</td>
<td>Normal</td>
</tr>
<tr>
<td>4) Tau Neutrino?</td>
<td>Geo-synchrotron</td>
<td>H-pol</td>
<td>Below Horizon</td>
<td>Normal</td>
</tr>
</tbody>
</table>
Extensive Air Shower Identification

ANITA identifies EAS events using pulse shape and polarization correlation to geomagnetic field.

ANITA-1 EAS Results

Credit: S. Hoover et al., PRL, 2010
One event that survived the blind analysis was up-going and below the horizon (possible τ lepton).

- One **up-going** ANITA event that passed blind analysis cuts (red square) pointed to the ice sheet but has the polarity of a direct event.
- This is consistent with an extensive air shower pointing up from the ground.
- Such signals could arise from decay of up-going τ-lepton of neutrino origin.
EAS events can have a significant fraction of circular polarization providing additional discrimination against backgrounds.

- EAS events can have a significant fraction of circular polarization (Stokes V) with LOFAR (Scholten et al., PRL, 2016)
- Down-going direct events have up to 25% circular polarization fraction.
- Up-going event has 10% circular polarization fraction.
The geomagnetic polarization vector is different at Xmax for a reflected down-going EAS compared to a direct up-going EAS.

- The event is consistent with Xmax for an up-going geometry.
- Down-going reflected hypothesis is discrepant by 2.5σ.

Polarization vector provides additional discrimination between reflected and up-going hypotheses.
Competing Hypotheses for Up-Going EAS Event

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Discrimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropogenic Background</td>
<td>• Anthropogenic backgrounds tested against 80,000 clustered events.</td>
</tr>
<tr>
<td></td>
<td>• Estimated probabilities of impulse shape, geomagnetic polarization, and Stokes V contents</td>
</tr>
<tr>
<td></td>
<td>• Estimated number of isolated background events is 1.6</td>
</tr>
<tr>
<td></td>
<td>• Including trials factor, we expect N=4x10^{-4} background events.</td>
</tr>
<tr>
<td></td>
<td>• EAS hypothesis is favored but not enough to exclude this possibility.</td>
</tr>
<tr>
<td>Reflected Down-going EAS Event</td>
<td>• Geomagnetic polarization is inconsistent at the 2.5σ level.</td>
</tr>
<tr>
<td></td>
<td>• Polarity mis-identification is negligible given high SNR.</td>
</tr>
</tbody>
</table>

Competing background hypotheses rejected at $\gtrsim 3.3 \sigma$ level.
τ-lepton hypothesis

State-of-the-art simulations built for constraining the acceptance and characterizing the observables.

- Detailed ν_τ and τ lepton propagation simulations through Earth including regeneration, τ energy loss, and the effects of differentiated layers of Earth, including ice (arXiv:1707.00334).

- Radio emission of up-going airshowers with ZHAireS.

- Monte Carlo sampling based estimate of the acceptance to produce an upper bounds of the ANITA exposure for this process.
ZHAireS simulations were used to obtain a radio emission signal model to place an upper bound relevant to ANITA.

- For the **upper bound** estimate, we took the radio emission profile that radiates the most power.

- This corresponds to emergence angle of 25 degrees with the decay occurring on the ground.
Simulations are consistent with τ shower energy and emergence angle.

- ANITA τ-candidate event has
 - Shower energy 0.6 ± 0.4 EeV
 - Emergence angle $24.4^\circ \pm 1^\circ$
- For tau neutrinos with energy ~ 0.3 EeV, simulations are consistent with the observations.
Upper Bounds on ANITA Exposure

ANITA exposure to τ-lepton EAS of ν_τ origin is significantly smaller than Auger and IceCube

- Assumed standard values of the neutrino cross-section and tau energy loss.
- Studied the effect of ice-shell thickness.
- Find that Auger and IceCube exposures are $\gtrsim 60$ times larger.
- Given neutrinos at UHE have not been detected, this makes diffuse ν-flux origin the ANITA event unlikely.
Upper Bounds on ANITA Acceptance

ANITA acceptance to τ-lepton EAS of ν_τ origin is significantly smaller than Auger and IceCube.

• However, at the energy range consistent with the observables, the acceptance is 3 orders of magnitude lower than Auger and IceCube.

• This makes *transient* ν-flux origin the ANITA event unlikely.

• Dedicated blind search for this class of events is now part of the ANITA-3 and ANITA-4 analysis.
Conclusions

• The origin of the up-going cosmic-ray-like ANITA event remains a mystery.

• Observables are consistent with a t-lepton air shower with backgrounds rejected at the $\gtrsim 3.3 \sigma$ level.

• The acceptance is 3 orders of magnitude smaller than IceCube and Auger

• Results from on-going blind analysis of ANITA-3 and ANITA-4 have the potential to confirm or falsify the astrophysical origin of this event.

Part of this research National was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the Aeronautics and Space Administration.
Backup
LOFAR has observed circular polarization in EAS from the ground Scholten et al., 2016

Stokes Parameters of three ANITA stratospheric extensive air showers.
Upper Bounds on ANITA Exposure

- We also studied the effect of varying the interaction models within SM uncertainties.
- Upper bounds on the exposure do not vary significantly enough to compensate.
- However, we do not have the dependence on SM uncertainties for Auger and IceCube so the comparison is inconclusive.
- Possibly a transient event?