Search for GeV neutrinos associated with solar flares with IceCube
I am about to tell you:

- How we can use the IceCube neutrino observatory as a GeV neutrino detector

- Why solar flares are ideal candidates for this event selection
Extracting GeV neutrinos

• Selecting neutrinos with $E < 5\text{GeV}$

• Searching for an enhancement in the event rate during an astrophysical transient event
Extracting GeV neutrinos

- Select the filters
- Remove HE events
- Try to remove noise
IceCube
IceCube

DeepCore
Extracting GeV neutrinos

- After filter selection

<table>
<thead>
<tr>
<th>Data</th>
<th>16 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Noise</td>
<td>7 Hz</td>
</tr>
</tbody>
</table>

| Signal* | 99.8 % |

* = Neutrinos < 5GeV with E^{-2} spectrum
Extracting GeV neutrinos

- Select the filters
- Remove HE events
- Try to remove noise
What is the difference?
How many Hard Local Coincidences?
Are they causally connected?
Extracting GeV neutrinos

✓ Select the filters

- Remove HE events

\[
N_{\text{HLC-DOMS}} \text{ in IceCube strings} \leq 6
\]

\[
N_{\text{HLC-DOMS}} \text{ in DeepCore strings} \leq 7
\]

\[
N_{\text{DOMS}} \text{ causally connected} \leq 10
\]
Extracting GeV neutrinos

- Select the filters
- After removing HE events

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Pure Noise</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>6.79 Hz</td>
<td>6.49 Hz</td>
<td>99.0 %</td>
</tr>
</tbody>
</table>
Uncorrelated thermal noise

Uncorrelated radioactive noise

Correlated scintillation noise
Causality between hits
(time window, threshold, velocity)
Extracting GeV neutrinos

- Select the filters
- Remove HE events
- Try to remove noise

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Pure Noise</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.22 Hz</td>
<td>0.11 Hz</td>
<td>57.0 %</td>
</tr>
</tbody>
</table>
Extracting GeV neutrinos

- Select the filters
- Remove HE events
- Try to remove noise

<table>
<thead>
<tr>
<th>Data</th>
<th>0.22 Hz</th>
<th>Sensitive to SF!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Noise</td>
<td>0.11 Hz</td>
<td></td>
</tr>
<tr>
<td>Signal</td>
<td>57.0 %</td>
<td></td>
</tr>
</tbody>
</table>
Solar flare ν, what?

$p + p_{\odot \text{ atm}} \rightarrow \nu, \gamma$

hadron acceleration (up to several GeV)

$p, \alpha... = \text{Solar Energetic Particles}$

$\pi^+ \rightarrow \mu^+ + \nu_\mu$

$\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$

$\pi^0 \rightarrow 2\gamma$

$\pi^- \rightarrow \mu^- + \bar{\nu}_\mu$

$\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$
Solar Energetic Particles

hadron acceleration (up to several GeV)

\(p \rightarrow p_{\text{atm}} \)

\(p + p_{\text{atm}} \rightarrow \pi^0 + \bar{\nu}_\mu + \bar{\nu}_e + \nu_e + \nu_\mu \)

Solar flare? what?
Solar flare ν, how?
Solar flare ν, how?

Fermi light curve for March 7th, 2012
Solar flare ν, how?

Fermi light curve for March 7th, 2012
Solar flare ν, why?

If detection:

Confirmation of hadronic acceleration in solar flares

If no detection:

Strongest limit on $S\nu$ flux

In any case:

Constraint on the proton acceleration
Beam of protons:

$$F(E) = A \ E^{-\delta} \ H(E_{max} - E)$$

A and δ derived from observations

Fixed $\delta = 3.2$

Average ν yield per injected proton vs. Neutrino energy (GeV)

- $E_{max} = 7\text{GeV}$
- $E_{max} = 3\text{GeV}$
Solar flare ν, why?

Fixed $\delta = 3.2$

- March 7th, 2012
- Impulsive phase
- 20 minutes
- 0.22Hz of data
Take-home messages

• IceCube is sensitive to GeV neutrinos from transient sources

• We can constrain solar flare physics

Thanks!
Extracting GeV neutrinos

- Select the filters

DeepCore

- AOF*
 - CascadeFilter
 - MuonFilter
 - VEF
 - ...

Low-Up

Full Sky Starting

* AOF = Any Other Filter
Extracting GeV neutrinos

Causality between hits

3 parameters:

- time window (ns)
- velocity (m/ns)
- threshold (#of pairs)
• beam of protons of

\[F(E) = A \, E^{-\delta} \, H(E_{\text{max}} - E) \]

A and \(\delta \) derived from observations
beam of protons of

\[F(E) = A E^{-\delta} H(E_{\text{max}} - E) \]

A and \(\delta \) derived from observations

Coupling with Fermi observations: \((\delta, E_{\text{max}})\)