Baseline Design for a Next Generation Wide-Field-of-View Very-High-Energy Gamma-Ray Observatory

Harm Schoorlemmer, Rubén López-Coto, Jim Hinton

http://nomadicpursuits.com
Future of VHE Gamma Ray detection on the Southern Hemisphere

Wide Field of View, Continuous Operations

Satellite Detector

Extensive Air Shower Detector

Imaging Atmospheric Cherenkov Telescope

TeV Sensitivity

slide concept: B. Dingus
Example of parameter distributions for vertical simulated air showers at 5000m

Energy that reaches ground usually contained in $\mu^\pm / e^\pm / \gamma$

Typically detectors measure:

Electromagnetic energy $E_{em} = E(e^\pm, \gamma)$

Number of muons N_μ

Ideal Uniform Air Shower Particle Detector Arrays

Detection Unit

- Perfect muon counter
- Perfect Calorimeter, above fixed threshold
- Perfect Timing

Default array:

- Unit threshold 20 MeV, Trigger multiplicity 20
- Elevation 5km, 75% filled
- Array size 200m x 200m, unit size 4x4m

absolutely not to scale
Varying ideal uniform array properties

Unit Size
Fill Factor
Elevation

Unit Threshold
Trigger multiplicity
Array size
Simulation and reconstruction

CORSIKA* Simulated air showers:
- Proton and Gamma
- Zenith angle 20°
- Energy 50 GeV-100 TeV
- Uniformly distributed within the array

Default array:
Unit threshold 20 MeV,
Trigger multiplicity 20,
Elevation 5km, 75% filled,
Array size 200mx200m, unit size 4x4m

\[\gamma \text{-ray efficiency} \]
\[\text{angular resolution} \]
\[\text{proton efficiency} \]

\[\text{trigger multiplicity} \]
\[\text{Likelihood fit} \]
\[\text{trigger multiplicity} \]
\[\text{& muon cut} \]

Better = Higher, Bigger & Denser
Better = Higher, Bigger & Denser

Building larger arrays is better for proton rejection.

Recommendation
1) Performance might be better for a lower but larger array than a smaller but higher array
2) Arrays should be larger than 100mx100m to perform sufficiently as γ ray observatory
Smaller unit size leads to better angular resolution

Recommendation
3) Improvement from 4mx4m to 2mx2m is marginal. … no need for detector units smaller than 4mx4m
Lower unit threshold and trigger multiplicity improves γ ray efficiency

Observation

4) Lowering trigger multiplicity and threshold increases γ ray efficiency, but decreases angular resolution in same energy range.

Recommendation

5) Improvements below unit threshold of 10 MeV is marginal.
Summary

Derived observatory performances for a variety of design choices

Recommendations for observatory design without hardware simulation

To Do:
More advanced hadronic shower rejections
Realistic Noise model (single muons, small showers)
THANK YOU
Cost remarks

detectors shouldn’t be high-tech

Water is cheap:
detection medium + conversion in one

Site (elevation, existing infrastructure local support):
difficult to optimize

Low multiplicity trigger might be cost efficient to improve lower energy gamma-ray efficiency

High energy augmentation is feasible
Science Case

Monitoring large fraction of the sky:

Transient events
- receive and send alerts (GRB, FRB, ν, GW, ??)
- Monitor ALL variable sources in FoV
- Unbiased sky maps

High energy reach
Atmospheric density, Slant depth
Fraction of showers above a fixed threshold

\begin{align*}
\text{Fraction of } E_{\text{em}}>10 \text{ GeV} \\
\end{align*}

\begin{align*}
\text{Slant Depth } [g/cm^2] \\
\end{align*}

\begin{align*}
\gamma & - E_{\gamma}=5 \text{ TeV} \quad E_{\gamma}=1 \text{ TeV} \quad E_{\gamma}=0.5 \text{ TeV} \\
\gamma & - E_{\gamma}=0.1 \text{ TeV} \quad E_{\gamma}=0.05 \text{ TeV} \\
\end{align*}

\begin{align*}
\text{proton} & - E_{p}=5 \text{ TeV} \quad E_{p}=1 \text{ TeV} \quad E_{p}=0.5 \text{ TeV} \\
\text{proton} & - E_{p}=0.1 \text{ TeV} \quad E_{p}=0.05 \text{ TeV} \\
\end{align*}
Muons:
*at least two muons within a radius from the core

\[\frac{N}{N_{p,50}} \geq 2 \]

within 50 from core

\[\frac{N}{N_{p,200}} \geq 2 \]

within 200 from core
Proton showers of same energy generate less E_{em} than gamma showers.

Variations are larger in proton showers.

Roughly Gaussian in log-space.
Parameterization of E_{em} as a function of atmospheric depth of observatory

Dependencies can parameterized with simple 2nd order polynomials.

Protons showers are less sensitive to atmospheric depth.
Equivalent gamma ray energy E'_γ and proton rejection

Relation between E_{det} and E_γ, to calculate E'_γ for proton showers

Cut on the number of muons

Fiducial cut

At least 2 muons or 90% γ efficiency
Shower size as function of slant depth and energy

\[r_{50} \text{ [m]} \]

Slant Depth [g/cm2]
Muons:
at least two muons within a radius from the core
Better = Higher, Bigger, Denser
Gamma ray efficiency

Fill factor

Array Size

Elevation

Unit Size

Unit Threshold

Trigger Multiplicity
Proton efficiency