SUPERNOVA REMNANTS IN THE VERY-HIGH-ENERGY SKY: PROSPECTS FOR CTA

Pierre Cristofari*

for the CTA consortium

ICRC 2017

* pc2781@columbia.edu
SNRs in the TeV sky

Scott Wakely & Deirdre Horan
tevcat2.uchicago.edu
Gamma rays from SNRs

Hadronic interactions:

- **Pion decay**

Leptonic interactions:

- **Inverse Compton scattering**

Situation unclear for many SNRs: instead of individual study, study of the entire population

Aharonian et al. (2006)

Aharonian et al. (2009)

Acciari et al. (2011)

RXJ 1713 - HESS

RCW 86 - HESS

Tycho – VERITAS
Cherenkov Telescope Array (CTA)

H.E.S.S.

\[F(>1 \text{ TeV}) \]

\[\approx 15 \text{ mCrab} \]
\[\approx 0.1^\circ \]
\[|l|<40^\circ ; |b|<3^\circ \]

CTA

\[\approx 1 \text{ mCrab} \]
\[\approx 0.05^\circ \]
\[|l|<60^\circ ; |b|<2^\circ \]

\[\approx 3 \text{ mCrab} \]
\[\approx 0.05^\circ \]

All-sky survey
A Monte Carlo approach

What we need:

- Time and Spatial distribution of SNRs
- Gas density distribution in the Galaxy
- Model for acceleration of cosmic rays in one SNR

Gamma emission of one SNR

Number of detectable SNRs by a given telescope
Time and spatial distribution of SNRs

Time distribution: SN rate: 3/century

Spatial distribution:

\[\rho(R) = A R^n e^{-R/\sigma} \]

\[A = 64.6 \text{ kpc}^{-4.35} \]
\[n = 2.35 \]
\[\sigma = 1.528 \text{ kpc} \]
\[\rho(8.5 \text{ kpc}) = 36 \text{ kpc}^{-2} \]

SN progenitor types

- Thermonuclear
- Core-collapse

<table>
<thead>
<tr>
<th>Type</th>
<th>(\varepsilon_{51})</th>
<th>(M_{ej,\odot})</th>
<th>(\dot{M}_{-5})</th>
<th>(u_{w,6})</th>
<th>Rel. rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIa</td>
<td>1</td>
<td>1.4</td>
<td>-</td>
<td>-</td>
<td>0.32</td>
</tr>
<tr>
<td>IIP</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0.44</td>
</tr>
<tr>
<td>Ib/c</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>IIb</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Faucher-giguère, Kaspi (2006)

Ptuskin et al. (2010)
Evolution of SNRs: type Ia

\[R_{sh} = 5.3 \left(\frac{E_{51}}{n_0 M_{ej,\odot}} \right)^{1/7} t_{kyr}^{4/7} \text{ pc} \]

\[u_{sh} = 3.0 \times 10^3 \left(\frac{E_{51}}{n_0 M_{ej,\odot}} \right)^{1/7} t_{kyr}^{-3/7} \text{ km/s} \]

\[t \gg 260 \left(\frac{M_{ej,\odot}}{1.4} \right)^{1/5} E_{51}^{-1/2} n_0^{-1/3} \text{ yr} \]

\[R_{sh} = 4.3 \left(\frac{E_{51}}{n_0} \right)^{1/5} t_{kyr}^{2/5} \left(1 - \frac{0.06 M_{ej,\odot}^{5/6}}{E_{51}^{1/2} n_0^{1/3} t_{kyr}} \right)^{2/5} \text{ pc} \]

\[u_{sh} = 1.7 \times 10^3 \left(\frac{E_{51}}{n_0} \right)^{1/5} t_{kyr}^{-3/5} \left(1 - \frac{0.06 M_{ej,\odot}^{5/6}}{E_{51}^{1/2} n_0^{1/3} t_{kyr}} \right)^{-3/5} \text{ km/s} \]

Type II

Thin Shell approximation

Momentum conservation

\[\frac{d}{dt} (M u_{sh}) = 4\pi R_{sh}^2 P_{in} \]

Energy conservation

\[E = \frac{4\pi}{3(\gamma + 1)} P_{in} R_{sh}^3 + \frac{1}{2} M u^2 \]

Ostriker & Mckee (1988)
Gas distribution

We are here

We extrapolate using fits from Shibata et al. (2010)

HI

Nakanishi&Sofue (2003)

H$_2$

Nakanishi&Sofue (2006)
1. Efficiency:

\[P_{CR}^0 = \xi_{CR} \rho_{up} u_{sh}^2 \]

Acceleration efficiency at the shock

\[\xi_{CR} = \eta_{CR} \approx 0.1 \]

Supported by theoretical work Caprioli (2010), Ptuskin & Zirakashvili (2008)

2. Slope of accelerated particles: free parameter

\[N_{CR} \propto p^{-\alpha} \]

\[\alpha = 4.1...4.4 \]

3. Maximum energy of accelerated protons

\[\frac{D(E_{max})}{u_{sh}} \approx 0.05...0.1 R_{sh} \]

Loss-limited X-ray filaments: fraction of kinetic energy into magnetic field

\[B_{down} = \sigma B_0 \sqrt{(u_{sh}/v_d)^2 + 1} \]
Particle acceleration: electrons

\[N_p \propto E^{-\alpha} \]

\[K_{ep} = 10^{-5} \text{...} 10^{-2} \]

\[E_{max}^e \approx 7.3 \left(\frac{u_{sh}}{1000 \text{km/s}} \right) \left(\frac{B_{down}}{100 \mu \text{G}} \right)^{-1/2} \text{TeV} \]

\[E_{\text{break}}^e \]

Longair (1990)

acc rate= synch loss rate

\[t_{\text{synch}} = t_{\text{age}} \]

Vannoni et al. 2009
Number of detections by CTA

\[\approx 400 \text{ SNRs} \]

\[\approx 30 \text{ SNRs} \]

Above the most optimistic scenario with H.E.S.S.

Cristofari et al. 2017
α = 4.1
$K_{ep} = 10^{-2}$

≈ 500 SNRs
≈ 350 SNRs
≈ 180 SNRs

Cristofari et al. (2017)
Number of detections by CTA

F(>1 TeV)

F(>10 TeV)

Cristofari et al. 2017
Conclusions and future perspectives

• A new test for the SNR hypothesis

• Constraining parameters governing particle acceleration

• Estimation on the SNR population accessible by CTA:
 – Improvement compared to H.E.S.S
 – Characterization of the population
 • Detection ≈ 22 - 120 SNRs
 • Size ≈ 0.2°
 • Distance ≈ 7-10 kpc
 • Ages ≈ 4-6 kyr

• Results of our approach confronted with other instruments (HAWC, HiSCORE)

• Detections of neutrinos from SNRs, search of PeVatrons