The Vela X pulsar wind nebula through the eyes of H.E.S.S. and Suzaku

L. Tibaldo, F. Aharonian P. Bordas, S. Caroff, J. A. Hinton, D. Khangulyan, H. Odaka, R. Tuffs, for the H.E.S.S. Collaboration
Context

- **pulsar wind nebulae**
 - extreme particle accelerators
 - contribute to CR e^+/e^-?

- **Vela X**
 - pulsar wind nebula of Vela pulsar (290 pc)
 - bright emission $>$ TeV
 - spatially resolved study in X-rays and gamma rays

- Vela supernova remnant shell
- Puppis A supernova remnant
- Vela X extended radio nebula
- Vela X cocoon
- 408 MHz
 - 0.1-0.4 keV
 - 0.4-2.4 keV

L. Tibaldo, Vela X with H.E.S.S. and Suzaku, ICRC 2017 Busan
Observations

- **X-rays:** Suzaku XIS
 - 3 archival observations

- **gamma rays:** H.E.S.S.
 - data accumulated from 2004 to 2016
 - 100 h livetime
Spectral extraction regions

- same regions for X-rays and gamma rays
- exclude region around pulsar (3.6 arcmin, XIS PSF 95%)
 - neutron star emission (thermal, magnetospheric)
 - jet-torus structure brightest in X-rays/ not resolved in gamma rays
- 0.3 pc to 5 pc from pulsar wind termination shock
Analysis

- **Suzaku XIS**
 - standard *Suzaku* tools
 - $E > 2.25$ keV: exclude supernova remnant
 - background from night Earth’s observations
 - spectral model
 - power law with interstellar absorption
 - cosmic X-ray background
 - 10% systematic uncertainties + leakage from pulsar in pointing 0

- **H.E.S.S.**
 - two independent calibration, reconstruction, and event selection pipelines
 - only data from 4 12-m telescopes, $E > 0.6$ TeV (uniform threshold)
 - residual background: ring method (map), reflected-region method (spectra)
 - spectral model
 - power law (pointing 0)
 - power law with exponential cutoff (pointing 1 and 2)
 - systematic uncertainties: 20% (flux) + differences between pipelines
H.E.S.S. detection map
Radiative modeling

\[
\frac{dN}{dE} = A \left(\frac{E}{E_0} \right)^{-\alpha} \exp \left[-\left(\frac{E}{E_{\text{co}}} \right)^\beta \right]
\]

- electrons
 - 30 TeV to > 100 TeV

- magnetic field (B)
 - \rightarrow synchrotron radiation in X-rays

- cosmic microwave background infrared radiation field (Popescu+ 2017)
 - \rightarrow inverse Compton in gamma rays

- fit to multiwavelength spectral energy distributions (SEDs)
 - Markov Chain Monte Carlo (MCMC) scan of parameters
 - software package: naima (Zabalza+ 2015)
- leptonic model naturally reproduces SEDs
- X-rays: harder spectrum in pointing 0?
Model parameters
Magnetic field turbulence?

synchrotron turbulent B
(Kelner+ 2013)

\[\text{PDF}(B) = (1 - a)\delta(B - B_{\text{RMS}}) + aCB^{-\alpha}H(B - B_{\text{min}})H(B_{\text{max}} - B) \]

example:
- \(\alpha = 3/2 \)
- \(B_{\text{max}} = 100 \times B_{\text{RMS}} \)
- \(C, B_{\text{min}} \rightarrow \text{PDF normalized to } 1, \sqrt{\langle B^2 \rangle} = B_{\text{RMS}} \)

synchrotron

gamma \rightarrow \text{electrons}
Conclusions

- H.E.S.S. + Suzaku \rightarrow spatially-resolved constraints on electron spectrum and magnetic fields - minimal model assumptions
- leptonic model naturally reproduces data
- electron spectra and magnetic field strength remarkably uniform from 0.3 pc to 5 pc from pulsar wind termination shock
- constrain turbulence of magnetic field
- magnetic field $> 5 \, \mu G$
 - $100 \, \text{TeV}$ electron cooling time $< 4 \, \text{kyr} << 20-30 \, \text{kyr}$ (system/pulsar age)
 - efficient particle acceleration/transport within cocoon
- weak constraints on electron cutoff: requires better measurements $> 10 \, \text{TeV}$ (CTA), X-rays $> 10 \, \text{keV}$ (NuStar)