An Inhomogeneous Jet Model for the Broad-Band Emission of Radio Loud AGNs

Thomas Vuillaume, LAPP, CNRS, France
Gilles Henri & Pierre-Olivier Petrucci, IPAG, CNRS, France
ICRC 2017, Busan

Contact : thomas.vuillaume@lapp.in2p3.fr
Motivations

Numerical modeling

Compton rocket

Two-flow paradigm

Application to 3C273
Motivations: open issues & 1-zone model

- Jet composition ($p^+ \text{ vs } e^-$)
- Jet power (Celotti & Ghisellini ++)
- Discrepancies in Γ_b (Bulk Lorentz Factor Crisis, Henri & Saugé 06)
- Acceleration and confinement of highly relativistic flows
- Location of emitting zone (Aharonian et al 09, Barres de Almeida 10)
- Uncorrelated variability (Aharonian et al 09, Aleksic et al 15)
Motivations: open issues & 1-zone model

- Jet composition ($p^+ \text{ vs } e^-$)
- Jet power (Celotti $\&$ Ghisellini $++)$
- Discrepancies in Γ_b
 ($Bulk$ Lorentz Factor Crisis, Henri $\&$ Saugé 06)
- Acceleration and confinement of highly relativistic flows
- Location of emitting zone
 (Aharonian et al 09, Barres de Almeida 10)
- Uncorrelated variability
 (Aharonian et al 09, Aleksic et al 15)

\Rightarrow 1-zone is physically limited and unsatisfactory

\Rightarrow Need more complex models
Motivations: structured jets models

- Spine/sheath (Ghisellini et al. 05)
Motivations: structured jets models

- **Spine/sheath** (Ghisellini et al. 05)
- **Blob-in-jet** (Katarzynski 01, Hervert et al. 15)
Motivations: structured jets models

- **Spine/sheath** (Ghisellini et al. 2005)
- **Blob-in-jet** (Katarzynski 2001, Hervet et al. 2015)
- **Two-flow** (Sol et al. 1989, Henri & Pelletier 1991)
Motivations: structured jets models

- **Spine/sheath** (Ghisellini et al. 05)
 ![Spine/sheath diagram](image)
 - Introduce more physics
 - Can potentially solve the current issues
 - Pushed by observations

- **Blob-in-jet** (Katarzynski 01, Hervet et al. 15)
 ![Blob-in-jet diagram](image)

- **Two-flow** (Sol et al. 89, Henri & Pelletier 91)
 ![Two-flow diagram](image)
Motivations: structured jets

$\Gamma \approx 2.5$

$\Gamma \approx 6$

M87, Mertens et al. 15

3C 84, Nagai et al. 14
Motivations

Numerical modeling

Compton rocket

Two-flow paradigm

Application to 3C273
The Two-Flow: hypothesis

*H. Sol, G. Pelletier, E. Asséo, 1989
The Two-Flow: hypothesis

MHD jet or wind
- Fuelled by accretion disk
- Baryon loaded
- Midly relativistic ($\approx 0.5c$)
- Carries most of the power

*H. Sol, G. Pelletier, E. Asséo, 1989
The Two-Flow: hypothesis

MHD jet or wind
- Fuelled by accretion disk
- Baryon loaded
- Midly relativistic ($\approx 0.5c$)
- Carries most of the power

Inner Jet
- Pairs e^-/e^+ (NO baryons here)
- Highly relativistic ($\Gamma \approx 10$)
- Responsible for most of the non-thermal emission
- Modeled

H. Sol, G. Pelletier, E. Asséo, 1989
The Two-Flow hypothesis

- **MHD jet or wind**
 - Fuelled by accretion disk
 - Baryon loaded
 - Midly relativistic ($\approx 0.5c$)
 - Carries most of the power

- **Inner Jet**
 - Pairs e^-/e^+ (NO baryons here)
 - Highly relativistic ($\Gamma \approx 10$)
 - Responsible for most of the non-thermal emission
 - Modeled

- Pairs get energy through the two flows interaction (2^{nd} order Fermi process)

H. Sol, G. Pelletier, E. Asséo, 1989
The Two-Flow: hypothesis

Turbulence + Pairs

2nd order
Fermi
High-energy pairs
Inverse Compton
\(\gamma\)-rays
\(\gamma-\gamma\)
absorption

New Pairs
The Two-Flow: hypothesis

- Turbulence + Pairs
 - Quickly get a lot of pairs!
 - Jet loading
 - 2nd order
 - Fermi
 - High-energy pairs
 - Inverse Compton
 - γ-rays
 - γ-γ absorption

New Pairs

Quickly get a lot of pairs!

Jet loading

2nd order

Fermi

High-energy pairs

Inverse Compton

γ-rays

γ-γ absorption
The Two-Flow hypothesis

Turbulence + Pairs

Quickly get a lot of pairs!

2nd order Fermi

High-energy pairs

Inverse Compton

Jet loading Flares

\(\gamma\)-rays

\(\gamma\)-\(\gamma\) absorption
The Two-Flow : interest

- Speeds discrepancy in jets

\[\Gamma \approx 2 \]

\[\Gamma \approx 10 \]
The Two-Flow: interest

Speeds discrepancy in jets

$\Gamma \approx 2$

$\Gamma \approx 10$

Bulk acceleration via Compton rocket
The Two-Flow: interest

- Speeds discrepancy in jets
 - $\Gamma \approx 10$
 - $\Gamma \approx 2$

- Bulk acceleration via Compton rocket
- Highly relativistic flow confinement
The Two-Flow: interest

- Bulk acceleration via Compton rocket
- Coherent and comprehensive picture of AGN jets
- Highly relativistic flow confinement
- Speeds discrepancy in jets

\[\Gamma \approx 2 \]
\[\Gamma \approx 10 \]
Motivations

Numerical modeling

Two-flow paradigm

Compton rocket

Application to 3C273
Modeling the jet

Standard accretion disc
Modeling the jet

Dusty torus in thermal equilibrium
Modeling the jet

Broad Line Region (absorb & re-emits disc radiation)
Modeling the jet

Jet slices
(adaptative size)
- $R(z) = \text{jet radius}$
- $B(z) = \text{magnetic field}$
- $Q(z) = \text{heating term}$
Modeling the jet

Particle distribution:
- $n(\gamma, z)$
Modeling the jet

Emission processes:
• Synchrotron
Modeling the jet

Emission processes:
• Synchrotron
• Synchrotron self-Compton
Modeling the jet

Emission processes:
• Synchrotron
• Synchrotron self-Compton
• External Compton
Modeling the jet

Absorption & pair-creation
Modeling the jet

Bulk Lorentz factor + observation angle
Modeling the jet – particle distribution

Pile-up:

\[n_e(\gamma, Z) = N_e(Z) \frac{\gamma^2}{2\bar{\gamma}^3(Z)} \exp \left(-\frac{\gamma}{\bar{\gamma}(Z)} \right) \]

Result from stochastic acceleration processes
Modeling the jet – particle distribution

Pile-up:

\[
n_e(\gamma, Z) = N_e(Z) \frac{\gamma^2}{2\bar{\gamma}^3(Z)} \exp \left(-\frac{\gamma}{\bar{\gamma}(Z)}\right)
\]

Result from stochastic acceleration processes

Result from pair-production & annihilation
Modeling the jet – particle distribution

Pile-up:

\[n_e(\gamma, Z) = N_e(Z) \frac{\gamma^2}{2\bar{\gamma}^3(Z)} \exp \left(-\frac{\gamma}{\bar{\gamma}(Z)} \right) \]

Result from stochastic acceleration processes

Result from pair-production & annihilation

Balance between cooling (emission) and heating (Q(z))
Modeling the jet – particle distribution

Pile-up:

\[n_e(\gamma, Z) = N_e(Z) \frac{\gamma^2}{2\bar{\gamma}^3(Z)} \exp \left(-\frac{\gamma}{\bar{\gamma}(Z)} \right) \]

Result from stochastic acceleration processes

Result from pair-production & annihilation

Balance between cooling (emission) and heating (Q(z))

Computed parameters!
Motivations

Numerical modeling

Two-flow paradigm

Compton rocket

Application to 3C273
The Compton Rocket: principle

- External photon
The Compton Rocket: principle

- External photon
- Inverse Compton photon
The Compton Rocket: principle

*O’Dell (81)
The Compton Rocket: principle

Energy source = MHD turbulence via particles
NOT external photon field

Cooling compensated by continuous re-acceleration
(≠ Phinney 82)

*O’Dell (81)
The Compton Rocket : equilibrium

- $\Gamma(z) = \Gamma_{eq}(z)$ in the inner parts of the jet
 - Implied by the spatial distribution of the external photon field
 - Does not depend on particles energetics (in Thomson regime)

- $\Gamma(z) \rightarrow \Gamma_\infty$
 - Implied by particles energetics

$\Gamma(z)$ not a free parameter

Vuillaume et al 15
Modeling the jet

3 power-laws \((R(z), B(z), Q(z))\)
+ initial conditions at the base of the jet
+ external sources

=> Compute self-coherent:
- \(n(\gamma,z)\)
- \(\Gamma(z)\) (Compton rocket)
- Particles emission
 (synchrotron, ssc, ec)
- Pair production
- Absorption
- Anisotropy of the sources and emission
Motivations

Numerical modeling

Two-flow paradigm

Compton rocket

Application to 3C273
Application to 3C 273

Data from Turler et al (1999)
Application to 3C 273

Data from Turler et al (1999)

Standard Accretion disc
Dusty torus
Broad Line Region (not visible here)
Application to 3C 273

Data from Turler et al (1999)

Standard Accretion disc
Dusty torus
Broad Line Region (not visible here)
Synchrotron
Synchrotron self-Compton
External Compton
Application to 3C 273

Different jet altitude = different part of the spectrum

- Standard Accretion disc
- Dusty torus
- Broad Line Region (not visible here)
- Synchrotron
- Synchrotron self-Compton
- External Compton
Different jet altitude = different part of the spectrum

Data from Turler et al (1999)

Standard Accretion disc
Dusty torus
Broad Line Region (not visible here)
Synchrotron
Synchrotron self-Compton
External Compton
Application to 3C 273

Different jet altitude = different part of the spectrum

Data from Turler et al (1999)

Standard Accretion disc
Dusty torus
Broad Line Region (not visible here)
Synchrotron
Synchrotron self-Compton
External Compton
Application to 3C 273

Different jet altitude = different part of the spectrum

Data from Turler et al (1999)

Standard Accretion disc
Dusty torus
Broad Line Region (not visible here)
Synchrotron
Synchrotron self-Compton
External Compton

Hot corona power-law added
(Haardt et al 98)
Conclusion

- AGN jets modelling in the two-flow paradigm
- Complex and coherent model
- Physical conditions
 - Imposed by observations
 - Computed along the jet from initial conditions at the base
- Model able to reproduce the broad-band emission of 3C273
Back-up slides
The Compton Rocket: equilibrium

- External photon
- Inverse Compton photon

Compton Rocket
The Compton Rocket: equilibrium

- External photon
- Inverse Compton photon

Compton Rocket

Compton Drag
The Compton Rocket: equilibrium

- External photon
- Inverse Compton photon

\[\Gamma < \Gamma_{eq} \]
\[\Gamma = \Gamma_{eq} \]
\[\Gamma > \Gamma_{eq} \]
The Compton Rocket: equilibrium

Instant equilibrium for hot pairs!

\[t_{IC}(\gamma_e) \ll t_{dyn} = \frac{Z}{c} \]

⇒ Compton rocket imposes \(\Gamma = \Gamma_{eq} \)

(as long as \(t_{IC}(\gamma_e) \ll t_{dyn} \))
Compton rocket with a standard accretion disc

Vuillaume et al (2015)
Compton rocket with a standard accretion disc

\[t_t(\gamma_e, Z) \approx Z/c \]

Jet prescription

\[R(Z) = R_0 \left(\frac{Z}{Z_0} + \left(\frac{R_i}{R_0} \right)^{1/\omega} \right)^\omega \]

\[Q(Z) = Q_0 \left(\frac{Z}{Z_0} + \left(\frac{R_i}{R_0} \right)^{1/\omega} \right)^{-\zeta} \exp \left(-\frac{Z}{Z_c} \right) \]

\[B(Z) = B_0 \left(\frac{R(Z)}{R_0} \right)^{-\lambda} \]
Sources modeling

Sources are described geometrically and “sliced” for numerical integration.
III. Resulting Γ_{eq} in AGN photon field

Finite accretion disc
+ dusty torus
+ BLR

$R_{out} = 10^4 R_S$
$R_{blr} = 10^3 R_S$
$R_t = 4 \cdot 10^4 R_S$

Vuillaume et al (2015)