Spectacular Flares of the Radio Galaxy NGC 1275 measured with MAGIC

Dorit Glawion
(Landessternwarte Heidelberg)
Cosimo Nigro, Konstantin Pfrang, Pierre Colin, Vandad Fallah Ramazani, Daniel Mazin, Konstancja Satalecka for the MAGIC Collaboration
ICRC 2017
Relativistic Jets in AGN

- Particle acceleration to extreme energies – origin of UHE cosmic rays ($E > 10^{18}$ eV)?
- Emission mechanisms at high energies: hadronic or leptonic?
- Location of the (fast) gamma-ray emission region?
- Black hole – jet connection?
- Jet structure & jet formation?
NGC 1275 in a Nutshell

- Distance of galaxy: ~73 Mpc (z=0.018)
- Host a compact AGN:
 - FR I radio galaxy (Vermeulen et al. 1994, Buttiglione et al. 2010)
 - Seyfert 1.5 (Humason 1932, Khachikan & Weedman 1974)
 - Strong variability: BL Lac classification (Veron 1978)
 - Radio Counter-jet visible
 → Viewing angle = 30°- 55° (Walker et al. 1994); 65° ± 16° (Fujita & Nagai 2017)
- Monitoring of pc-scale jet
 - New radio knot ejected in 2005
 - Fast γ-ray variability of time scale of (1.51±0.02) d found with Fermi (Brown & Adams 2011)
The Perseus Cluster seen with MAGIC

Mean flux 7-9 times higher than in 2009-2011 of 3% C.U. (Aleksić et al. 2014)
Oct./Nov. 2016 16% C.U. (ATel #9689) and Jan. 2017 150% C.U. (ATel #9929)
Rise in January 2017 within a few days
\[\rightarrow \text{Doubling time scale of } (10.2 \pm 1.7) \text{ h from exponential fit} \]
- Harder spectrum w.r.t. Aleksić et al. 2014 and curved
- Significant signal found above 1 TeV
- Power-law fits plus exponential cutoff indicate cutoff at ~500 GeV (e.g. EBL cutoff expected at 10 TeV, see Ahnen et al. 2016)
Theoretical aspects from variability

- Size of emission region:
 \[
 R > \delta c \tau_{\text{var}} = 22 \cdot \delta \cdot R_G
 \]
 for \(\tau_{\text{var}} = 10.2 \) h and \(M_{\text{BH}} = 3 \times 10^8 M_\odot \) (Wilman et al. 2005)

 No problem with shock-in-jet model
Theoretical aspects from variability

- Size of emission region:
 \[R > \delta c \tau_{\text{var}} = 22 \cdot \delta \cdot R_G \]
 for \(\tau_{\text{var}} = 10.2 \text{ h} \) and \(M_{\text{BH}} = 3 \times 10^8 M_\odot \) (Wilman et al. 2005)

 ![Checkmark]

 No problem with shock-in-jet model

- Internal \(\gamma \gamma \)-pair production for 1 TeV photons:
 \[
 \tau_{\gamma \gamma} \sim \frac{\sigma_T D_L^2 F_0 \varepsilon_\gamma (1+z)}{10 R m_e^2 c^5 \delta^5} < 1 \rightarrow \delta \approx 7 \text{ for } F_0 = F_{\text{2MASS,2\text{\mu m}}} \text{ (Jarrett et al. 2003)}
 \]
 \[
 \quad \quad \quad \rightarrow \delta \approx 3.5 \text{ for } F_0 = F_{\text{HST,1.6\text{\mu m}}} \text{ (Baldi et al. 2010)}
 \]

 ![X]
 Constrains viewing angle to \(\theta < 9 \) or \(\theta < 16 \) for any \(\Gamma_B \)
Spine-layer model

- Geometry of SSC emission region defined with:
 - Spine $\Gamma_{\text{spine}} = 10 - 20$ in red
 - Layer $\Gamma_{\text{layer}} = 2 - 4$ in blue

- Evidence found in radio band:
 - Limb-brightened structure in inner pc-scale jet (Nagai et al. 2014)

- But for energies > 1 TeV $\rightarrow \tau_{\gamma\gamma} \gg 1$
 - Strong internal absorption at TeV energies

Data: Aleksić et al. 2014
Model: Tavecchio, F. & Ghisellini 2014
Summary

TeV observation of radio galaxies

Fast variability
Preliminary
Detection at TeV energies and maybe cutoff
Preliminary