VERITAS detection of VHE emission from the optically bright quasar OJ 287

S. O’Brien
For The VERITAS Collaboration
1. OJ 287
2. Historical Observations and Monitoring Programs
3. VERITAS Observations
4. Fermi-LAT and Swift-XRT Observations
5. Multiwavelength Results
6. Conclusions and Future Plans
• Optically bright quasar located at $z = 0.306$.
• Classification unclear (LBL/FSRQ).
• Archival observations dating back to 1890 reveal a ~12 year outburst cycle.
• Models invoking a binary black hole system and a helical jet have been used to explain quasi-periodic nature.
• Valtonen et al. 2011 using a BBH model accurately predicted 2007 and 2015 optical outbursts.
• Optical outburst expected in 2019!
Previous Observations and Monitoring

- Previously observed by VERITAS (S. Archambault et al. 2016):
 - During anticipated 2007 optical outburst
 - During 2010-2011 season
 - Non-detections, 99% c.l. upper limit of 2.6% Crab
- Observed by MAGIC during 2007 (H. Seta et al. 2009):
 - Non-detections and 95% c.l. upper limits of 3.3% and 1.7% Crab
- Regularly monitored by Swift-XRT as part of γ-ray ‘sources of interest’ program (M. C. Stroh et al. 2013):
 - Exceptional X-ray activity observed in late 2016
 - Intense MWL monitoring
Fermi-LAT: https://fermi.gsfc.nasa.gov/ssc/data/access/lat/msl_lc/

Swift-XRT: http://www.swift.psu.edu/monitoring/
Published VERITAS Observations

2010-2011 Season

Orbit of secondary black hole

Anticipated 2007 active phase

Primary accretion disk

Impact outflow

Primary spin direction

S. O’Brien, ICRC 2017
• Exceptional X-ray activity this season lead VERITAS observations during December 2016 and January 2017.
• No detection!
• Historic X-ray rates observed by Swift-XRT.
• VERITAS initiated a ToO on 1\(^{st}\) - 4\(^{th}\) of February, triggering additional Swift-XRT observations.
• > 5\(\sigma\) detection, ATel released on 5\(^{th}\) of February.
• Intense VERITAS follow-up observations taken between 16th February and 30th March.
• Many observations taken simultaneously with Swift.
• ~50 hours of data (post quality cuts and dead time corrected) taken from 9th December 2016 – 30th March 2017.
• Data analysed using Boosted Decision Tree Gamma/Hadron cuts optimised for a soft spectrum source.
• Total of 3178 on-source and 15734 off-source events (normalisation of 0.167)
• 9.7σ detection.
• Time-averaged flux (E > 150 GeV) 1.3 % Crab.
• 2D symmetric gaussian fit applied to excess counts map, fit source location (J2000):
 - R.A. 08h 54'49.1" ± (2.2'')_{stat}, Dec:+20°05'58.89'' ± (31.96'')_{stat}

VERITAS Results

VERITAS data is divided up into 3 periods of approximate constant signal.

<table>
<thead>
<tr>
<th>Period (MJD)</th>
<th>Exposure (Hours)</th>
<th>Excess Significance (σ)</th>
<th>(F(E > 150 \text{ GeV}) \times 10^{-12}) [cm(^{-2})s(^{-1})]</th>
<th>(F(E > 150 \text{ GeV})) [% Crab*]</th>
<th>(\chi^2/\text{NDF})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Historic Swift Flare</td>
<td>57731 – 57777</td>
<td>5.0</td>
<td>2.0</td>
<td>< 7.64</td>
<td>< 2.1</td>
</tr>
<tr>
<td>Enhanced X-ray activity</td>
<td>57785 – 57817</td>
<td>25.3</td>
<td>10.1</td>
<td>(6.51 +/- 0.93)</td>
<td>(1.8 +/- 0.3)</td>
</tr>
<tr>
<td>Decaying X-ray activity</td>
<td>57827 – 57843</td>
<td>20.1</td>
<td>2.8</td>
<td>(2.58 +/- 0.91)</td>
<td>(0.7 +/- 0.2)</td>
</tr>
<tr>
<td>Total</td>
<td>50.4</td>
<td>9.7</td>
<td>(4.61 +/- 0.62)</td>
<td>(1.3 +/- 0.2)</td>
<td>44.0/31</td>
</tr>
</tbody>
</table>

* A. M. Hillas et al. (1998)
VERITAS Results

- Total time-averaged spectrum obtained between 100 – 560 GeV.
- 95% c.l. upper limits calculated for < 5 on-source counts and < 2σ excess
- 1σ confidence interval on power-law fit (statistical errors only).

\[
\frac{dN}{dE}_{\text{obs}} = N \left(\frac{E}{E_0} \right)^{-\Gamma}
\]

<table>
<thead>
<tr>
<th>Period</th>
<th>(N \times 10^{-11}) [cm(^{-2})s(^{-1})TeV(^{-1})]</th>
<th>(E_0) [TeV]</th>
<th>(\Gamma)</th>
<th>(\chi^2 / \text{NDF})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>((2.82 \pm 0.34_{\text{stat}}))</td>
<td>0.2</td>
<td>((3.49 \pm 0.28_{\text{stat}}))</td>
<td>0.5 / 3</td>
</tr>
<tr>
<td>(2) 57785 – 57817</td>
<td>((3.90 \pm 0.51_{\text{stat}}))</td>
<td>0.2</td>
<td>((3.58 \pm 0.32_{\text{stat}}))</td>
<td>0.25 / 3</td>
</tr>
</tbody>
</table>
VERITAS Results

\[\frac{dN}{dE}_{\text{obs}} = \frac{dN}{dE}_{\text{intrinsic}} e^{-\tau(E,z)} \]

- \(z = 0.306 \rightarrow \text{significant EBL attenuation!} \)
- Observed spectrum is deabsorbed for EBL attenuation (assuming a Franceschini et al. 2008 EBL model)
- \[\frac{dN}{dE}_{\text{deab}} = (4.66 \pm 0.56) \times 10^{-11} \left(\frac{E}{0.2 \text{TeV}} \right)^{-2.36 \pm 0.36} \text{ [cm}^{-2}\text{s}^{-1}\text{TeV}^{-1}] \]
- \[\chi^2_{NDF} = \frac{0.6}{3} \]
Fermi-LAT Results

<table>
<thead>
<tr>
<th>Period (MJD)</th>
<th>Test Statistic (TS)</th>
<th>$F(0.1$-300 GeV) ($\times 10^{-8}$) [$cm^{-2}s^{-1}$]</th>
<th>Spectral Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 57731 – 57777</td>
<td>122.5</td>
<td>(3.97 ± 1.07)</td>
<td>(1.90 ± 0.13)</td>
</tr>
<tr>
<td>(2) 57785 – 57817</td>
<td>100.9</td>
<td>(5.01 ± 1.44)</td>
<td>(1.96 ± 0.16)</td>
</tr>
<tr>
<td>(3) 57827 – 57843</td>
<td>95.8</td>
<td>(4.78 ± 1.89)</td>
<td>(1.75 ± 0.19)</td>
</tr>
<tr>
<td>3FGL</td>
<td>8.41*</td>
<td></td>
<td>(2.12 ± 0.03)</td>
</tr>
</tbody>
</table>

* Assuming 3FGL fit holds over (0.1-300 GeV)
Swift-XRT Results

- Swift-XRT analysis is ongoing.
- Analysis of Period 2 shows clear flux variability ($\chi^2/\text{NDF} = 156.7/18$).
- Spectral shape consistent with a constant model for Period 2 ($\chi^2/\text{NDF} = 11.22/18$).

X-ray Flux (2 keV – 10 keV)

Power-Law Index

ICRC 2017
Swift-XRT Results

- Spectra obtained for the **hardest and brightest** and **softest and dimmest** observations during Period 2.

\[\text{Index} = 2.59 \pm 0.06, \text{Flux} = (1.04 \pm 0.05) \times 10^{-11} \]

\[\text{Index} = 2.70 \pm 0.13, \text{Flux} = (4.10 \pm 0.47) \times 10^{-12} \]
Multiwavelength Light Curves

VERITAS Time-Averaged Flux
Extrapolated 3FGL Flux
Nightly-binned Flux points regardless of significance

Fermi-LAT
5-Day Bins
ULs for TS < 9

Swift-XRT: http://www.swift.psu.edu/monitoring/
Multiwavelength SED

Period 2 time-averaged spectral energy distribution

$E^2 \frac{dN}{dE} \text{ [MeV cm}^{-2} \text{s}^{-1}]$

ICRC 2017
Multiwavelength SED

Period 2 time-averaged spectral energy distribution

• **Intra-period variability** observed in X-ray spectrum.
• Shift in location of IC-energy Peak from 3FGL → Period 2:
 - $\Gamma_{3FGL} \ (2.12 \pm 0.03)$
 - $\Gamma_{Perio d\ 2} \ (1.96 \pm 0.16)$
• No significant evidence for curvature in Fermi-LAT spectrum → IC-peak shifted to higher energies.
• VERITAS spectrum suggests the peak is located < 100 GeV.
Conclusions and Future Work

- VERITAS has detected VHE emission spatially consistent with OJ 287 and temporally consistent with enhanced MWL activity from OJ 287.
- This strong (9.7 σ) detection allows for spectral and flux analysis of OJ 287.
- Intense follow up campaign initiated by VERITAS with many observations taken simultaneously with Swift-XRT.
- Clear X-ray variability observed during the VERITAS observations.
- Apparent shifting of the IC-energy peak from the 3FGL spectrum to higher energies during the VERITAS observations.
- Analysis still ongoing.
- Other multiwavelength data needs to be analysed (Swift-UVOT under analysis)
- Full Poissonian-Likelihood analysis required for further discussion of flux correlations across the different energy bands. Will be presented in a future publication.
- Full modelling of OJ 287’s broadband spectrum will be the subject of a future publication.
References

• S. Archambault et al., Upper Limits from Five Years of Blazar Observations with the VERITAS Cherenkov Telescopes, AJ, 151, 142 (2016).
VERITAS detection of VHE emission from
the optically bright quasar OJ 287
• Optically bright quasar located at $z = 0.306$
• Classification unclear (LBL/FSRQ)
• Archival observations dating back to 1890 reveal a ~12 outburst cycle.
• Models invoking a binary black hole system and a helical jet have been used to explain quasi-periodic nature.
• CITE using a BBH model accurately predicted 2007 and 2015 optical outburst.
• Optical outburst expected in 2019!
Multiwavelength Light Curves

- Low statistics VERITAS data requires correct statistical handling of this data.
- Full Poison-Likelihood analysis of the flux and its correlation to different wavelengths will be presented in a future work.

[Graph showing multiwavelength light curves with green and red markers for VERITAS and Swift, respectively.]
VERITAS Results

\[
\frac{dN}{dE}_{\text{obs}} = \frac{dN}{dE}_{\text{intrinsic}} e^{-\tau(E,z)}
\]

- \(z = 0.306 \rightarrow \text{significant EBL attenuation!} \)
- Observed spectrum is deabsorbed for EBL attenuation (assuming a Franceschini et al. 2008 EBL model)