Main features of cosmic ray induced air showers measured by the CODALEMA experiment

Lilian MARTIN1,3, R. Dallier1,3, A. Escudie1, D. García-Fernández1, F. Gaté1*, A. Lecacheux2 and B. Revenu1,3.

1SUBATECH, Nantes
2LESIA, Paris-Meudon
3USN, Nançay
*now at LAPP, Annecy
Motivations of CODALEMA

- **Goals:**
 - Study the properties of the radio electric field produced in extensive air showers
 - Promote the radio detection technique as an competitive alternative to SD and FD techniques
 - Contribute to cosmic ray physics within the CODALEMA energy range

- **Context:**
 - Installed since 2002 at the Nançay radio astronomy observatory
 - Several generations of antennas, LNA, triggers, daq and arrays developed...

Radio electric transients produced by the geomagnetic and charge excess mechanisms
The CODALEMA instruments

- 57 autonomous stations (B.Revenu et al. [CRI109])
- 13 scintillators
- 10+5 cabled antennas (A.Lecacheux et al. [CRI103])
- 1 tripole antenna (R.Dallier et al. [CRI104])
- 7 LF antennas (A.Escudie et al. [CRI102], D.García-Fernández et al. [CRI118])

Surface: ~ 1 km²
The autonomous station

EW and NS horizontal polarizations
Wide band – [20 – 200] MHz
LONAMOS LNA
1 Gs/s – 2.5 μs
Self triggering – On board processing
GPS timing
Event reconstruction in the arrays

- Typical rates (in a month):
 - SC: 40,000 evts
 - SA: 1,200,000 evts (loose trigger)
 - Coincidences: 60 evts!

- Arbitrary small sample of events for this preliminary analysis:
 - Reflect roughly the observed variety in multiplicities, signal amplitudes, shower axis and locations
 - Not representative of the array acceptances
 - SA and SC arrival directions agree
Convolution of the antenna response

- Systematic comparisons with model predictions: SELFAS*
- Convolution: (Model predictions → ADC values) vs Data
- Calculated/measured global transfer function of the detection chain (including the antenna response)

Is the sensitivity preserved?

Model: SELFAS

ADC: SELFAS convol.

Spectrum and amplitude variations are preserved!
Extracting cosmic ray features

- SELFAS+CONEX simulation with a virtual antenna array using $E=10^{17}$ eV and $(\theta, \phi)_{\text{exp}}$
- Interpolate amplitudes $F(x,y)$
- Convolution with the antenna response $H(f, \theta, \phi)$
- Process a set of SELFAS simulations (typ. 50 p, 10 Fe) per event to sample the X_{max} range
- Calculate χ^2 from amplitude differences
 \[\chi^2 = \sum_{\text{ant}} \left(\frac{A_{\text{ant}} - \alpha F(x_{\text{ant}} - X_{\text{core}}, y_{\text{ant}} - Y_{\text{core}})}{\sigma_{\text{ant}}^2} \right)^2 \]
- Loop over a range of core location $(X_{\text{core}}, Y_{\text{core}})$ and scaling energy factor α
- The lowest χ^2 determines the overall most probable $(X_{\text{core}}, Y_{\text{core}})$, $E=\alpha \times 10^{17}$ eV and X_{max}

Inspired by the method used on AERA data by F.Gaté et al., ARENA 2016, Groningen, June 7-10, 2016.

- Combination of $(X_{\text{core}}, Y_{\text{core}})$ and α with the lowest χ^2 ($= \chi^2_{\text{min}}$) is the most probable set of values.

\[\chi^2_{\text{min}} \text{ vs } X_{\text{max}} \]
Some examples

- Amplitude footprint
- χ^2 vs core location
- χ^2 vs X_{max}

Lateral distribution function
- Data + SELFAS

Few antennas give access to the CR properties!
Polarization patterns solve ambiguities

Data SELFAS

Local minimum in the χ^2_{min} values versus X_{max} distribution. Polarization patterns support only one solution. Both EW and NS amplitudes must be matched separately!
Comparison with the scintillators

Shower core often outside of the SC array: E_{particle} underestimated!
Better agreement using $(X_c,Y_c)_{\text{radio}}$ for the E_{particle} estimation

No error bars on E_{radio} yet, no real atmosphere for X_{max}

Preliminary analysis seems on the right direction but still lots of (careful) work to do!

L.M. ICRC July 2017
Conclusions and Outlook

- CODALEMA is routinely observing high-energy cosmic rays in the $10^{16} - 10^{18}$ eV range.

- CODALEMA data compare well with SELFAS simulations: shower core locations, X_{max} and energies can be estimated using the radio signals.

- Further improvements:
 - Careful estimations of systematics, error bars and resolutions
 - Analysis extended to the full CODALEMA set of data (especially at lower E)
 - Analysis method (comparison with simulations) extended to the two polarizations and the full spectrum
 - Sensitivity and resolution estimation for a sparser array

- Analysis in progress in parallel with other R&D developments:
 - 3-polarization antenna, standalone and phased triggers, LF antennas...
Spares
Trigger and Acquisition systems

Analog T1 trigger: no permanent digitization of the signals and a controlled energy budget (~20W per station).

SA - multi-level triggering strategy:
- **T1** on trigger board: filter, threshold discrimination, combination of channels, coarse timing...
- **T2** on local PC: timing, pulse shape discrimination, polarization, spectral content...
- **T3** on central acq. syst.: relative timing between stations, direction of arrival, occurrence frequency...

SC – particle trigger selection:
- Individual threshold (15 mV)
- Multiplicity selection (5 or more over 13 SC)
- Trigger GPS timing
- Trigger broadcast over the network
Convolution of the antenna response

- Electric field pattern is not simple, dependence to the \((v, B)\) angle \(\rightarrow\) compare to realistic simulations!
- **Direction?**
 - **Deconvolution:** data \(\rightarrow\) \(E_{\text{field}}\) vs Model
 - **Convolution:** Model \(\rightarrow\) ADC vs Data

- **Global transfer function:**
 - \(H(f, \theta, \phi) = H_{\text{ant.}}(f, \theta, \phi) H_{\text{ana.}}(f) H_{\text{digit.}}(f)\)
 - Calculated or/and measured transfer functions

\[F^{-1}(H \cdot F(E(t, \theta, \phi))) = ADC(t) \]

Extracting cosmic ray features (II)