Telescope Array search for EeV photons and neutrinos

35th ICRC, Busan, July 18, 2017
Telescope Array Collaboration

R.U. Abbasi1 M. Abe13 T. Abu-Zayyad1 M. Allen1 R. Azuma3 E. Barcikowski1 J.W. Belz1 D.R. Bergman1
V. Kuzmin16 M. Kuznetsov16 Y.J. Kwon7 J. Lan1 S.I. Lim20 J.P. Lundquist1 S. Machida3 K. Martens11 T. Matsuda8
T. Matsuyama9 J.N. Matthews1 M. Minamino9 Y. Mukai2 I. Myers1 K. Nagasawa13 S. Nagataki21 T. Nakamura22
T. Nonaka10 A. Nozato6 S. Ogio9 J. Ogura3 M. Ohnishi10 H. Ohoka10 K. Oki10 T. Okuda23 M. Ono30 A. Oshima9
L.M. Scott14 P.D. Shah1 F. Shibata2 T. Shibata10 H. Shimodaira10 B.K. Shin4 H.S. Shin10 J.D. Smith1 P. Sokolsky1
H. Yoshii29 Ya. Zhezher16 R. Zollinger1 Z. Zundel1

1 University of Utah 2 University of Yamanashi 3 Tokyo Institute of Technology 4 Hanyang University 5 Tokyo University of Science 6 Kinki University 7 Yonsei University 8 KEK 9 Osaka City University 10 University of Tokyo (ICRR)
11 University of Tokyo (Kavli Institute) 12 Kanagawa University 13 Saitama University 14 Rutgers University 15 Tokyo City University, 16 Russian Academy of Sciences (INR) 17 Waseda University 18 Chiba University 19 Chungnam National University 20 Ewha Womans University 21 Kyoto University 22 Kochi University 23 Ritsumeikan University 24 Universite Libre de Bruxelles 25 University of Tokyo (Earthquake Institute) 26 Hiroshima City University 27 RIKEN
28 Japanese National Institute of Radiological Science 29 Ehime University 30 Kyushu University

Belgium, Japan, Korea, Russia, USA
Telescope Array surface detector

- 507 SD’s, 3 m² each
- 680 km² area
- 9 years of operation

Largest UHECR statistics in the Northern Hemisphere

Grigory I. Rubtsov for the Telescope Array collaboration

TA photon and neutrino search
p-induced EAS

γ-induced EAS

Photon-induced showers:
- arrive younger
- contain less muons
- multiple SD observables affected:
 - front curvature, Area-over-peak, number of FADC signal peaks, $\chi^2/d.o.f.$, S_b
Photon search: data and Monte-Carlo sets

- Data collected by TA surface detector for the nine years: 2008-05-11 — 2017-05-11
- p and γ Monte-Carlo sets with CORSIKA and dethinning

Cuts for both data and MC:
- 7 or more detectors triggered
- core distance to array boundary is larger than 1200m
- χ^2/d.o.f. < 5
- $\theta < 60^\circ$
- $E_\gamma > 10^{18}$ eV (E_γ is estimated with photon Monte-Carlo)

52769 events after cuts

Note: MC set is split into 3 equal parts: (I) for training the classifier, (II) for cut optimization, (III) for exposure estimate.
Photon search: list of relevant observables

1. Zenith angle, θ;
2. Signal density at 800 m from the shower core, S_{800};
3. Linsley front curvature parameter, a;
4. Area-over-peak (AoP) of the signal at 1200 m;

5. AoP LDF slope parameter;
6. Number of detectors hit;
7. N. of detectors excluded from the fit of the shower front;
8. $\chi^2/d.o.f.$;
9. $S_b = \sum S_i \times r_i^b$ parameter for $b = 3$ and $b = 4.5$;

10. The sum of signals of all detectors of the event;
11. Asymmetry of signal at upper and lower layers of detectors;
12. Total n. of peaks within all FADC traces;
13. N. of peaks for the detector with the largest signal;
14. N. of peaks present in the upper layer and not in lower;
15. N. of peaks present in the lower layer and not in upper;
The Boosted Decision Trees (BDT) technique is used to build p-γ classifier based on multiple observables.

root::TMVA is used as a stable implementation.

BDT is trained with Monte-Carlo sets: γ (Signal) and p (Background)

BDT classifier is used to convert the set of observables for an event to a number $\xi \in [-1 : 1]$: 1 - pure signal (γ), -1 - pure background (p).

ξ is available for one-dimensional analysis. The cut on ξ for the search is optimized using proton MC as a null-hypothesis.
Distribution of MVA estimator (ξ) for data and MC

log(E_γ)>18.0

Entries 52769
Mean -0.1338
RMS 0.07948
Underflow 0
Overflow 0

log(E_γ)>18.5

Entries 32700
Mean -0.1317
RMS 0.07903
Underflow 0
Overflow 0

log(E_γ)>19.0

Entries 10070
Mean -0.1245
RMS 0.07469
Underflow 0
Overflow 0

log(E_γ)>19.5

Entries 2279
Mean -0.153
RMS 0.07832
Underflow 0
Overflow 0

/PRELIMINARY/

data photon MC proton MC
Optimization of cut on ξ:

- The photon candidates are selected using the cut on ξ:
 $$\xi > \xi_{\text{cut}}(\theta)$$

- The cut is approximated as a quadratic function of θ

- Cut is optimized in each energy range using proton and photon Monte-Carlo (cut optimization subsets)

- The merit factor is an average photon upper limit if the null-hypothesis is true (all protons)
Effective exposure

- Geometric exposure for $\theta \in (0^\circ, 60^\circ)$: \(12063 \text{ km}^2 \text{ sr yr}\)
- Effective exposure is estimated using photon MC assuming E^{-2} primary spectrum

<table>
<thead>
<tr>
<th>E_0</th>
<th>quality cuts</th>
<th>ξ-cut</th>
<th>A_{eff} km2 sr yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^{18.0}$</td>
<td>6.8%</td>
<td>6.5%</td>
<td>53</td>
</tr>
<tr>
<td>$10^{18.5}$</td>
<td>20.1%</td>
<td>7.9%</td>
<td>192</td>
</tr>
<tr>
<td>$10^{19.0}$</td>
<td>43.8%</td>
<td>16.0%</td>
<td>846</td>
</tr>
<tr>
<td>$10^{19.5}$</td>
<td>52.1%</td>
<td>34.0%</td>
<td>2138</td>
</tr>
<tr>
<td>$10^{20.0}$</td>
<td>64.7%</td>
<td>55.3%</td>
<td>4317</td>
</tr>
</tbody>
</table>
$E_\gamma > 10^{18}$ eV, zenith angle dependent cut on ξ: MC

Grigory I. Rubtsov for the Telescope Array collaboration

TA photon and neutrino search
$E_\gamma > 10^{18}$ eV, zenith angle dependent cut on ξ: MC

Grigory I. Rubtsov for the Telescope Array collaboration

TA photon and neutrino search
$E_\gamma > 10^{18} \text{ eV}$, zenith angle dependent cut on ξ: data

1 photon candidate event
Photon candidate events

<table>
<thead>
<tr>
<th>energy cut</th>
<th>event date and time</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_0 > 10^{18.0}$ eV</td>
<td>2011-09-16 19:40:56</td>
<td></td>
</tr>
<tr>
<td>$E_0 > 10^{18.5}$ eV</td>
<td>2011-09-16 19:40:56</td>
<td></td>
</tr>
<tr>
<td>$E_0 > 10^{19.0}$ eV</td>
<td>2011-07-27 08:06:15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011-09-16 19:40:56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2012-07-06 01:49:11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014-09-27 07:54:35</td>
<td></td>
</tr>
<tr>
<td>$E_0 > 10^{19.5}$ eV</td>
<td>2011-07-27 08:06:15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011-09-16 19:40:56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2012-09-07 01:55:45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014-09-27 07:54:35</td>
<td></td>
</tr>
<tr>
<td>$E_0 > 10^{20.0}$ eV</td>
<td>2011-07-27 08:06:15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013-08-27 22:38:37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014-08-23 02:39:15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014-09-27 07:54:35</td>
<td></td>
</tr>
<tr>
<td>energy cut</td>
<td>event date and time</td>
<td>comment</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>$E_0 > 10^{18.0}$ eV</td>
<td>2011-09-16 19:40:56</td>
<td>BURST event</td>
</tr>
<tr>
<td>$E_0 > 10^{18.5}$ eV</td>
<td>2011-09-16 19:40:56</td>
<td>BURST event</td>
</tr>
<tr>
<td>$E_0 > 10^{19.0}$ eV</td>
<td>2011-07-27 08:06:15</td>
<td>BURST event</td>
</tr>
<tr>
<td></td>
<td>2011-09-16 19:40:56</td>
<td>BURST event</td>
</tr>
<tr>
<td></td>
<td>2012-07-06 01:49:11</td>
<td>BURST event</td>
</tr>
<tr>
<td></td>
<td>2014-09-27 07:54:35</td>
<td>BURST event</td>
</tr>
<tr>
<td>$E_0 > 10^{19.5}$ eV</td>
<td>2011-07-27 08:06:15</td>
<td>BURST event</td>
</tr>
<tr>
<td></td>
<td>2011-09-16 19:40:56</td>
<td>BURST event</td>
</tr>
<tr>
<td></td>
<td>2012-09-07 01:55:45</td>
<td>BURST event</td>
</tr>
<tr>
<td></td>
<td>2014-09-27 07:54:35</td>
<td>BURST event</td>
</tr>
<tr>
<td>$E_0 > 10^{20.0}$ eV</td>
<td>2011-07-27 08:06:15</td>
<td>BURST event</td>
</tr>
<tr>
<td></td>
<td>2013-08-27 22:38:37</td>
<td>γ candidate</td>
</tr>
<tr>
<td></td>
<td>2014-08-23 02:39:15</td>
<td>γ candidate</td>
</tr>
<tr>
<td></td>
<td>2014-09-27 07:54:35</td>
<td>BURST event</td>
</tr>
</tbody>
</table>

"BURST events" – multiple SD triggers within one millisecond found to be associated with lightnings

J. Belz talk CRI251; TA collaboration, Phys.Lett. A 381 (2017) 2565
Results: photon flux limits

<table>
<thead>
<tr>
<th>E_0, eV</th>
<th>$10^{18.0}$</th>
<th>$10^{18.5}$</th>
<th>$10^{19.0}$</th>
<th>$10^{19.5}$</th>
<th>$10^{20.0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ candidates</td>
<td>10</td>
<td>10</td>
<td>40</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>$\bar{n} <$</td>
<td>3.09</td>
<td>3.09</td>
<td>3.09</td>
<td>3.09</td>
<td>6.72</td>
</tr>
<tr>
<td>A_{eff}</td>
<td>53</td>
<td>192</td>
<td>846</td>
<td>2138</td>
<td>4317</td>
</tr>
<tr>
<td>$F_\gamma <$</td>
<td>0.059</td>
<td>0.016</td>
<td>0.0037</td>
<td>0.0014</td>
<td>0.0016</td>
</tr>
</tbody>
</table>

Note: This graph is preliminary and subject to further analysis.
Neutrino search strategy

young shower, $\theta = 19.5^\circ$

old shower, 78.3°

- Neutrino-induced showers are young while very inclined
- Waveform has many peaks

neutrino shower, $\theta = 78.6^\circ$

upper layer | **lower layer**
Method

- Cuts:
 - 5 or more detectors triggered
 - core distance to array boundary is larger than 1200m
 - χ^2/d.o.f. < 5
 - $45^\circ < \theta < 90^\circ$
 - no energy cut

 197250 events after cuts

- Multivariate analysis is used
 - The set of observables is the same as for photon search (Energy is replaced with S_{800})

- Method: Boosted decision tree trained with inclined proton (background) and all-flavor down-going neutrino (signal) Monte-Carlo

- The cut on ξ is optimized in a similar to photon search way
Distribution of MVA estimator (ξ) for data and MC

/data neutrino MC proton MC/
Results

- 0 neutrino candidates after cuts, $\bar{n}_\nu < 2.44$ (90% C.L.)

Exposure:
- Geometric exposure for $\theta \in (45^\circ, 90^\circ)$: $8042 \text{ km}^2 \text{ sr yr}$
- Probability to interact in the atmosphere: 1.4×10^{-5}
- Trigger, reconstruction and quality cuts efficiency $\sim 7\%$
- ξ cut efficiency: $\sim 24\%$
- Total exposure (all flavors): $A = 1.9 \times 10^{-3} \text{ km}^2 \text{ sr yr}$

- Single flavor diffuse neutrino flux limit for $E > 10^{18} \text{ eV}$: $E^2 f_\nu < 1.4 \times 10^{-6} \text{ GeV cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$ (90% C.L.)
Conclusions

- The search for photons and neutrino in the TA SD 9 years data is performed with the multivariate analysis method.

- Photon and down-going neutrino diffuse flux limits above $10^{18.0}$ eV are presented.

- The lightning-induced events are classified as the photon candidates.
Backup slides
TA Observation: “Burst” Events

- 5 year data (2008-2013)
- 10 surface detector bursts seen
 - 3 or more SD triggers, $\Delta t < 1$ msec
 - Occasional $\Delta t \sim 10 \, \mu$sec
- “Normal” SD trigger rate < 0.01 Hz.
 These cannot be cosmic ray air showers.
- Found to have close time/space coincidence with *U.S. National Lightning Detection Network* (NLDN) activity.
Consider a surface station time-resolved signal

Both peak and area are well-measured and not much affected by fluctuations

First introduced by Pierre Auger Collaboration in the context of neutrino search
$E_\nu > 10^{18}$ eV, zenith angle dependent cut on ξ: MC
$E_{\nu} > 10^{18}$ eV, zenith angle dependent cut on ξ: MC
$E_\nu > 10^{18} \text{ eV}$, zenith angle dependent cut on ξ: data

0 neutrino candidate events
Impact of possible proton MC systematics

- Proton MC is used for MVA estimator training and cut optimization

- Systematics in proton MC affects the method sensitivity
 1. protons are closer to photons that data: exposure is underestimated
 2. data are closer to photons than protons: extra photon candidates in the data set

- In both cases the flux limits stay conservative
Joint 7-parametric fit: $x_{core}, y_{core}, \theta, \phi, S_{800}, t_0, a$

$$f(r) = \left(\frac{r}{R_m} \right)^{-1.2} \left(1 + \frac{r}{R_m} \right)^{-(\eta-1.2)} \left(1 + \frac{r^2}{R_1^2} \right)^{-0.6}$$

$$LDF(r) = f(r)/f(800 \text{ m})$$

$$S(r) = S_{800} \times LDF(r)$$

$$t_0(r) = t_0 + t_{plane} + a \times 0.67 (1 + r/R_L)^{1.5} LDF(r)^{-0.5}$$

$$R_m = 90.0 \text{ m}, \ R_1 = 1000 \text{ m}, \ R_L = 30 \text{ m}$$

$$\eta = 3.97 - 1.79 (\sec(\theta) - 1)$$
Distribution of ξ for data and MC 10^{20} eV

\begin{figure}
\centering
\includegraphics[width=\textwidth]{plot.png}
\caption{Distribution of ξ for data and MC 10^{20} eV.}
\end{figure}

\begin{tabular}{|c|c|c|c|}
\hline
\% & Data & Photon MC & Proton MC \\
\hline
\hline
\end{tabular}