Air Shower Simulation with a New (first) Generation of post-LHC Hadronic Interaction Models in CORSIKA

Tanguy Pierog

Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany

ICRC 2017, BEXCO, Busan, South Korea

July the 18th 2017
Outline

- Hadronic Interactions and Monte-carlo (MC) for Cosmic Ray (CR) analysis
- General MC comparison of model extrapolations
- Electromagnetic (EM) signal in extended air showers
- Muon signal

LHC data reduced the model uncertainties and exclude old models for mass composition of cosmic rays. Remaining uncertainties linked to model limitations and lack of (light) nuclear target.
Energy Spectrum

Equivalent c.m. energy $\sqrt{s_{pp}}$ (GeV)

Scaled flux $E^{2.5} J(E)$ (m2 s$^{-1}$ sr$^{-1}$ eV$^{-1.5}$)

- HERA (γ-p)
- RHIC (p-p)
- Tevatron (p-p)
- 7 TeV
- 13 TeV
- LHC (p-p)
- 100 TeV
- FCC (p-p)

$knee(s)$

Telescope Array

Pierre Auger Obs.

EAS

ankle

ATIC

PROTON

RUNJOB

KASCADE (SIBYLL 2.1)

KASCADE-Grande

Tibet ASg (SIBYLL 2.1)

IceTop

LHC(Pb-p)

Energy (eV/particle)

R. Engel (KIT)
Hadronic Interaction Models

What are the hadronic model suppose to do?

- Transfer part of the energy of a fast projectile to slower newly produced particles when a target is hit
- Excite the vacuum to produce new particles (quantum number conservation)
- Conserve the total energy of the system
- Follow the standard model (QCD)
 - but mostly non-perturbative regime (phenomenology needed)

Which model for CR? (alphabetical order)

- **DPMJETIII.17-1** by S. Roesler, A. Fedynitch, R. Engel and J. Ranft
- **EPOS (1.99/LHC)** (from VENUS/NEXUS before) by H.J. Drescher, F. Liu, T. Pierog and K. Werner.
- **QGSJET** (01/II-03/II-04) by S. Ostapchenko (starting with N. Kalmykov)
- **Sibyll (2.1/2.3c)** by E-J Ahn, R. Engel, R.S. Fletcher, T.K. Gaisser, P. Lipari, F. Riehn, T. Stanev
When does a projectile interact?

For all models cross-section calculation based on optical theorem

- total cross-section given by elastic amplitude

\[\sigma_{\text{tot}} = \frac{1}{s} \Im m(A(s, t \to 0)) \]

- different amplitudes in the models but free parameters set to reproduce all p-p cross-sections

- basic principles + high quality LHC data = same extrapolation

Pre-LHC

Post-LHC

\[\sigma_{\text{inc}} \text{ (mb)} \]

\[\sqrt{s} \text{ (GeV)} \]
How does the projectile interact?

- **Field theory**: scattering via the exchange of an excited field
 - parton, hadron, quasi-particle = Reggeon or Pomeron (vacuum excitation)

- **Gribov-Regge Theory and cutting rules**: multiple scattering associated to cross-section via sum of inelastic states
 - different ways of dealing with energy conservation

- Sum all scatterings with full energy to get cross-section
- Get number of elementary scattering without energy sharing (Poissonian distribution)
- Share energy between scattering afterwards

- Cross-section calculated with energy sharing
- Get the number of scattering taking into account energy conservation
- Consistent approach
Does energy sharing order matter?

- **Field theory**: scattering via the exchange of an excited field
 - parton, hadron, quasi-particle = Reggeon or Pomeron (vacuum excitation)

- **Gribov-Regge Theory and cutting rules**: multiple scattering associated to cross-section via sum of inelastic states
 - different ways of dealing with energy conservation

Pre - LHC

Post - LHC

Graphs showing the distribution of multiplicity n for ATLAS $p + p \rightarrow \text{chrg}$ at 7 TeV, $|\eta| < 2.5$, $N > 1$, $p_t > 0.1$ GeV, comparing models such as SIBYLL 2.1, QGSJETII-03, QGSJET01, EPOS 1.99 no core, SIBYLL 2.3c, QGSJETII-04, DPMJETIII-17.1, and EPOS LHC no core.
How to build the amplitude?

- **Field theory**: scattering via the exchange of an excited field
 - parton, hadron, quasi-particle = Reggeon or Pomeron (vacuum excitation)

- **QCD based theory**: so at high energy, perturbative QCD can be used to build the field amplitude (amplitude used for the cross-section)
 - all minijet based (parton cascade and pQCD born process hadronized using string fragmentation) but different definitions

 - soft + hard in different components
 - external parton distribution function *(GRV98, cteq14)*
 - connection to projectile/target with small “x”

 - soft + hard in the same amplitude
 - own parton distribution function compatible with HERA data *(not for QGSJET01: pre-HERA time)*
 - connection to projectile/target with large “x”
Does the minijet definition matter?

- Field theory: scattering via the exchange of an excited field
 - parton, hadron, quasi-particle = Reggeon or Pomeron (vacuum excitation)

- QCD based theory so at high energy, perturbative QCD can be used to build the field amplitude (amplitude used for the cross-section)
 - all minijet based (parton cascade and pQCD born process hadronized using string fragmentation) but different definitions

Before LHC:
- \(p + p \rightarrow \text{chrg 13 TeV CMS inelastic} \)

After LHC:
- \(p + p \rightarrow \text{chrg 13 TeV CMS inelastic} \)

"Mid-rapidity" \(\theta = \pi/2 \)
Does the minijet definition matter?

- Field theory: scattering via the exchange of an excited field
 - parton, hadron, quasi-particle = Reggeon or Pomeron (vacuum excitation)

- QCD based theory so at high energy, perturbative QCD can be used to build the field amplitude (amplitude used for the cross-section)
 - all minijet based (parton cascade and pQCD born process hadronized using string fragmentation) but different definitions

Pre-LHC

Post-LHC
How to take into account energy evolution?

- Multiple scattering not enough to reconcile pQCD minijet cross-section and total cross-section
 - Non-linear effect should be taken into account (interaction between scatterings)

Solution depends on amplitude definition

- Hard amplitude depend on minimum p_t
 - Parametrize minimum p_t as a function of energy (and impact parameter for DPMJETIII)
 - Fit to data (multiplicity and cross-section)

- Not needed because of wrong parton distribution function

- Fixed minimum p_t in hard part
 - Enhanced diagrams not compatible with energy sharing
 - Modification of vertex function to take into account non linear effects (data driven phenomenological approach)

- QGSJETII
 - Theory based “fan diagrams” resumed to infinity without energy sharing

- EPOS
 - Fixed minimum p_t in hard part
Do non linear effects matters?

- Multiple scattering not enough to reconcile pQCD minijet cross-section and total cross-section
 - non-linear effect should be taken into account (interaction between scatterings)

- Solution depends on amplitude definition
 - large uncertainties at high energy but reduced after LHC

Pre - LHC

Post - LHC
What if only energy is transferred?

- In most of the cases, the projectile is destroyed by the collision:
 - non-diffractive scattering: high energy loss for leading particle, high multiplicity

- In 10-20% of the time, the projectile have a small energy loss (high elasticity) and is unchanged:
 - diffractive scattering: low energy loss, low multiplicity on target side

Model difference mostly at technical level (and choice of data)
Should everything be taken into account?

Models have different philosophies!

- number of parameters increase with data set to reproduce
- predictive power may decrease with number of parameters
- predictive power increase if we are sure not to neglect something

- models for CR only
- fast and not suppose to describe everything
- no real hard scattering or collective effects
- heavy ion model intended to be used for high energy physics
- limited development for collective effects but correct hard scattering
- developed first for heavy ion interactions
- detailed description of every possible “soft” observable (not good for hard scattering yet)
- sophisticated collective effect treatment (real hydro for EPOS 2 and 3)
- very large data set (LEP, HERA, SPS, RHIC, LHC)
Should everything be taken into account?

- Models have different philosophies!
 - Number of parameters increase with data set to reproduce
 - Predictive power may decrease with number of parameters
 - Predictive power increase if we are sure not to neglect something

- No direct influence on air showers but different parameters and extrapolations?
How to do nuclear interactions?

- **Sibyll** (light ion only)
 - corrected Glauber for pA
 - superposition model for AA (A x pA)

- **QGSJETII** (all masses but not all data)
 - Scattering configuration based on A projectiles and A targets
 - Nuclear effect due to multi-leg Pomerons

- **DPMJETIII** (all masses)
 - Glauber
 - limited collective effects treatment

- **EPOS** (all masses)
 - Scattering configuration based on A projectiles and A targets
 - screening corrections depend on nuclei
 - final state interactions (core-corona approach and collective hadronization with flow for core)

Main source of uncertainty in extrapolation:
- very different approaches
- limited available data set
- limited models capabilities
Ultra-High Energy Hadronic Model Predictions p-Air
Ultra-High Energy Hadronic Model Predictions p-Air

Comparisons

EM Signal

Muon Signal

Interactions

$\frac{dn}{d\eta}$ vs pseudorapidity η

$p+p \rightarrow \text{Chrg 14 TeV}$

$p+p$ Charged

$p+p$

$p+O \rightarrow \text{Chrg 10 TeV}$

$p+\text{Air}$ Charged

$p+\text{Air}$
Ultra-High Energy Hadronic Model Predictions π-Air

Interactions

Comparisons

EM Signal

Muon Signal
After LHC:

- Sibyll shifted by ~+20 g/cm²
- for other models about the same \(<X_{\text{max}}\) value at \(10^{18}\) eV but
 - slope increased for QGSJETII
 - slope decreased for EPOS
- very similar elongation rate (slope) for all models
+/- 20g/cm^2 is a realistic uncertainty band but:
- minimum given by QGSJETII-04 (high multiplicity, low elasticity)
- maximum given by Sibyll 2.3c (low multiplicity, high elasticity)
- anything below or above won't be compatible with LHC data
Model Consistency using Electromagnetic Component

Study by Pierre Auger Collaboration

\[\text{std deviation of lnA allows to test model consistency.} \]

positive (physical) variance only if \(X_{\text{max}} \) fluctuations are compatible with \(<X_{\text{max}} > \) for a given model.

\(QGSJETII-04 \) is a lower limit for \(X_{\text{max}} \) too small
Muons at Ground

- Muon production depends on all int. energies
- Muon production dominated by pion interactions (LHC indirectly important)
- Resonance and baryon production important
- Post-LHC Models ~ agrees on numbers but with different production height (MPD) and spectra
Muons Production Depth

- Same for EPOS LHC and SIBYLL 2.3c
- Very shallow for DPMJETIII
- but same X_{max} than EPOS LHC

MPDs sensitive to baryon (less generation) and meson spectra in pion interactions so small effect on X_{max}

see CRI202 from M. Mallamaci
MPD measurement helped to understand the importance of pion interactions (lack of accelerator data until NA61)

- Low pion elasticity in DPMJETIII
- High pion elasticity (diffraction) in EPOS and Sibyll driven by LHC data
- Diffraction with pion projectile or proton projectile are different
Summary

Central particle production at LHC reduced model uncertainties in X_{max} range ("truth" ~ between QGSJETII-04 and Sibyll 2.3c)

- same energy evolution in models important for mass of primary cosmic rays
- all pre-LHC models in contradiction with LHC data (central and forward prod.)
- using latest model version reduce uncertainties and avoid unphysical behavior

Remaining 40 gr/cm2 xrange for X_{max} predictions

- linked to forward physics (photon spectra and diffraction measured at LHC) not yet taken into account in models used for EAS simulation (coming...)
- effect of extrapolation to p-Air interaction
 - p-O beam necessary to check that p-p properly extrapolated
 - p-Pb measurements can be used but need change in most models (only EPOS reproduces p-Pb data for the moment) and cross-section or forward spectra are different event for the same multiplicity

LHC data reduced the model uncertainties and exclude old models for mass composition of cosmic rays. Remaining uncertainties linked to model limitations and lack of (light) nuclear target.
Multiplicity

- Multiplicity fixed by data up to 900 GeV

- Extrapolation to high energy is still model dependent?

Pre-LHC

Post-LHC

\[N \] vs \[\sqrt{s} \] (GeV)

- \(p+(a)p \)
 - QGSJET01
 - SIBYLL 2.1
 - QGSJET II-03
 - EPOS 1.99

- \(p+(a)p \)
 - EPOS LHC
 - QGSJETII-04
 - SIBYLL 2.3c
 - DPMJETIII-17.1
Ultra-High Energy Hadronic Model Predictions A-Air

Inelastic Cross Section (mb)
- EPOS
- QGSJETII
- SIBYLL

Charged Particles Multiplicity
- EPOS
- QGSJETII
- SIBYLL
- p
- He
- N
- Fe

EM Particles with x > 0.01
- EPOS
- QGSJETII
- SIBYLL
Uncertainties in X_{max}

- photon energy spectra
- elasticity (for 2d interaction)
- extrapolation to nuclear interactions

Use directly energy spectra from first interaction
- which energy is important?

Photon Energy Spectra

![Graphs showing energy spectra for different interactions and energies.](image-url)
- LHCf favor not too soft photon spectra (EPOS LHC, SIBYLL 2.3): deep X_{max}
- No model compatible with all LHCf measurements: room for improvements!
- Can p-Pb data be used to mimic light ion (Air) interactions?

T. Sako for the LHCf collaboration
Conclusion ...

From Roberto Aloiso talk (2015 working group)
Baryons in Pion-Carbon

- Very few data for baryon production from meson projectile, but for all:
 - strong baryon acceleration (probability ~20% per string end)
 - proton/antiproton asymmetry (valence quark effect)
 - target mass dependence

- New data set from NA49 (G. Veres' PhD)
 - test π^+ and π^- interactions and productions at 158 GeV with C and Pb target
 - confirm large forward proton production in π^+ and π^- interactions but not for antiprotons
 - forward protons in pion interactions are due to strong baryon stopping
 (nucleons from the target are accelerated in projectile direction)
 - strong effect only at low energy

- EPOS overestimate forward baryon production at high energy
Cosmic Ray Spectrum

Equivalent c.m. energy $\sqrt{s_{pp}}$ (GeV)

Scaled flux $E^{2.5} J(E)$ (m2 s$^{-1}$ sr$^{-1}$ eV$^{1.5}$)

- RHIC (p-p)
- HERA (γ-p)
- Tevatron (p-p)
- 7 TeV 14 TeV LHC (p-p)

- HiRes-MIA
- HiRes I
- HiRes II
- Auger ICRC 2013
- TA SD 2013

knee(s)

EAS

ankle

- ATIC
- PROTON
- RUNJOB

KASCADE (QGSJET 01)
KASCADE (SIBYLL 2.1)
KASCADE-Grande 2012
Tibet ASg (SIBYLL 2.1)

R. Engel (KIT)
Diffraction measurements

- TOTEM and CMS diffraction measurement not fully consistent
- Tests by S. Ostapchenko using QGSJETII-04 \((\text{PRD89 (2014) no.7, 074009})\)
 - SD+ option compatible with CMS
 - SD- option compatible with TOTEM

<table>
<thead>
<tr>
<th>(M_X) range</th>
<th>(< 3.4) GeV</th>
<th>(3.4 - 1100) GeV</th>
<th>(3.4 - 7) GeV</th>
<th>(7 - 350) GeV</th>
<th>(350 - 1100) GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTEM [13, 24]</td>
<td>2.62 ± 2.17</td>
<td>6.5 ± 1.3</td>
<td>(\simeq 1.8)</td>
<td>(\simeq 3.3)</td>
<td>(\simeq 1.4)</td>
</tr>
<tr>
<td>QGSJET-II-04 option SD+</td>
<td>3.9</td>
<td>7.2</td>
<td>1.9</td>
<td>3.9</td>
<td>1.5</td>
</tr>
<tr>
<td>option SD-</td>
<td>3.2</td>
<td>8.2</td>
<td>1.8</td>
<td>4.7</td>
<td>1.7</td>
</tr>
</tbody>
</table>
| difference of \(~10\) gr/cm\(^2\) between the 2 options
Simplified Shower Development

Using generalized Heitler model and superposition model:

\[X_{\text{max}} \sim \lambda_e \ln \left((1-k) \cdot \frac{E_0}{2N_{\text{tot}} \cdot A} \right) + \lambda_{\text{ine}} \]

- Model independent parameters:
 - \(E_0 \) = primary energy
 - \(A \) = primary mass
 - \(\lambda_e \) = electromagnetic mean free path

- Model dependent parameters:
 - \(k \) = elasticity
 - \(N_{\text{tot}} \) = total multiplicity
 - \(\lambda_{\text{ine}} \) = hadronic mean free path (cross section)

Light Ion Data

Very few data to compare with all CR models:

- strong limitations in Sibyll (projectile up to Fe only and target up to O!)
- no final state interactions exclude heavy nuclei for QGSJETII
- no light ion data at high energy

![Graphs showing comparisons of different models with experimental data.](image)
Tests using hydrogen atmosphere

- Work done with David D'Enterria (CERN) and Sun Guanhao
 - test of Pythia event generator
- Modified air shower simulations with air target replaced by hydrogen
 - for interactions only (no change in density)
 - no nuclear effect
EAS with Old CR Models: X_{max}

- HiRes-MIA
- HiRes (2005)
- Yakutsk 2001
- Fly's Eye
- Yakutsk 1993
- Auger (2013)

X_{max} vs Energy (eV)

- LHEP 1.99
- SIBYLL 2.1
- QGSJETII-03
- QGSJET01

Energy range: 10^{17} to 10^{20} eV

X_{max} range: 50 gr/cm2 to 900 gr/cm2
LHC acceptance

- **p-p data of central detectors used to reduce uncertainty by factor ~2**
 - p-Pb difficult to compare to CR models (only EPOS)
 - special centrality selection
 - pO ?

- **Direct photon energy spectra from LHCf**
 - small phase space but relevant for X_{max}
 - p-Pb (O) and correlation with ATLAS

- **Average elasticity/inelasticity** (energy fraction of the leading particle)
 - all diffraction measurement to be taken into account
Hadronic Interaction Models in CORSIKA

Old generation:
- All Glauber based

New (!) generation:
- LHC tuned:
- LHC inspired:
 - **SIBYLL 2.3**
 - Motivation:
 - update with latest LHC results in simple model

Comparisons
- Attempt to get everything described in a consistent way (energy sharing)
- (energy sharing)

Motivation:
- update with LHC results
- Fix high energy

** EM Signal**
- DPMJET III
- QGSJET III (?)
- Motivation:
 - Hard Pomeron-Pomeron connexion

Muon Signal
- **QGSJET II-04**
- Ostapchenko
- Motivation:
 - Hard Pomeron-Pomeron connexion

- **NEXUS 3.97**
- soft
- Attempt to get everything described in a consistent way

- **QGSJET II-03**
- Engel et al.
- semi-hard

- **QGSJET 01**
- DPMJET 2.55
- VENUS
- (<2001)

- **(HDPM)**

- **EPOS LHC**
- (2013-)
- Motivation:
 - update with LHC results
 - binary scaling in hard probes

- **EPOS 1.99**
- (2005-2012)
- Motivation:
 - update with LHC results
 - fix high energy

- **EPOS 3**
- (2016-)
Cross Section and Multiplicity in Models

- **Gribov-Regge and optical theorem**
 - Basis of all models (multiple scattering) but
 - Classical approach for QGSJET, SIBYLL and DPMJET (no energy conservation for cross section calculation)
 - Parton based Gribov-Regge theory for EPOS (energy conservation at amplitude level)

- **pQCD**
 - Minijets with cutoff in SIBYLL and DPMJET
 - Same hard Pomeron (DGLAP convoluted with soft part: no cutoff) in QGSJET and EPOS but
 - Generalized enhanced diagram in QGSJET-II
 - Simplified non linear effect in EPOS
 - Phenomenological approach
Preamble

- **Goal of Astroparticle Physics:**
 - astronomy with high energy particles

- **How to test hadronic interactions?**
 - if the source mechanism is well understood we could have a known beam at ultra-high energy (10^6 GeV and more)
 - improving but not very precise
 - reasonable minimum limits from CR abundance:
 - low = hydrogen (proton)
 - high = iron ($A=56$)
 - test of hadronic interactions in EAS via correlations between observables.

- mass measurements should be consistent and lying between proton and iron simulated showers if physics is correct