Analyzing UHECR arrival directions through the Galactic magnetic field in view of the local universe as seen in 2MRS

M. Rameez

with M. Ahlers and P. Denton
UHECRs and the GZK Cutoff

We know for $E > \sim 50$ EeV

$$p + \gamma_{\text{CMB}} \rightarrow \Delta^+ \rightarrow n + \pi^+$$

A horizon of a few 100 Mpcs

No obvious clustering
The Local Universe as Seen in 2MRS

Densest all-sky redshift survey available. Complete to $z=0.03$. ~45000 galaxies down to K band magnitude of 11.75

Note the Supergalactic plane and the Virgo and Perseus Pisces Superclusters. More than 30% of the Galaxies within 20 MPc are within 10 degrees of Virgo.
A population of standard candle sources

- Should follow the matter distribution of the universe
- Source density,
 - Test $1e^{-5}$, $1e^{-4}$ and $1e^{-3} \, /Mpc^3$
 - JCAP 1305 (2013) 009, Auger
- Composition is unknown
 - Test pure proton, Si and Fe at source
- Spectrum is unknown
 - Test $E^{-2.0}$ and $E^{-0.9}$
- Redshift evolution – $(1 + z)^3$, like SFR

Zone of avoidance due to Galactic plane is randomly filled in.

Sources beyond 120 Mpc are filled in isotropically (conservative)
Propagation in Extragalactic space

• Account for losses due to photopion production, electron pair production and photodisintegration in CMB and IRB, as well as nuclear decay for heavier nuclei. CRPropa3 JCAP 1605(2016)no.05, 038

\[\theta_{\text{def}} = 0.025^\circ \left(\frac{D}{\lambda} \right)^{1/2} \left(\frac{\lambda}{10\text{Mpc}} \right) \left(\frac{B}{10^{-11} \text{G}} \right) \left(\frac{E}{10^{20} \text{eV}} \right)^{-2} Z \]

random deflections, Gaussian beam smoothing. Test B=1.e-11, 1.e-10 and 1.e-9 G

Increasing distance shells
Propagation in Galactic magnetic field - Backtracking

- Galaxy: Sphere of radius 30 Kpc
- Observer: At 8.5 Kpc from center.
- Magnetic Field: JF2012 (also PT2011)
- Forward propagating computationally impossible
- Propagate anti-nucleons of charge $-Z$ from Earth to outside the Galaxy.
- Apply weights corresponding to direction and composition at Galactic boundary.
Example maps

All proton, $E^{-0.9}, 10^{-3}/Mpc^3, B_{\text{Extragal}} = 10^{-11} G$

All Fe at source, $E^{-2.0}, 10^{-5}/Mpc^3, B_{\text{Extragal}} = 10^{-9} G$
Quantifying Anisotropy

Power Spectrum

\[C_\ell = \frac{1}{4\pi N} \quad \sigma_\ell = \frac{1}{4\pi N} \sqrt{\frac{N - 1}{N}} \frac{2}{2\ell + 1} \]

Current Auger + TA data are compatible with isotropy at \(p = 10.4\% \) level.

\(l_{\text{max}} \) determined by counting nodal zones of \(Y_{lm} \) s.

Likelihood

Compare directly against data

\[L = \prod_{i=1}^{N} \frac{\Phi(u_i)}{\omega(u_i)} \]

\[TS = -2\log \frac{L}{L_0} \]
Results

Best Fit hypothesis:
All Fe (at source), $E^{-2.0}, 10^{-5}/Mpc^3, B_{E_{Xtragal}} = 10^{-9} G$

(At Earth on average this corresponds to 10-40% Silicon, 30-60% Oxygen, 20-50% Nitrogen)

Compatible with data at $p = 9.8$

The best all proton hypothesis has $p < 5.6 \times 10^{-6}$ (4.6σ).
No map in 18000 trials are as isotropic as data.

Silicon is compatible at $p \sim 0.00058$ (3.4σ)

Best Fit hypothesis:
All Fe (at source), $E^{-0.9}, 10^{-5}/Mpc^3, B_{E_{Xtragal}} = 10^{-9} G$

Best proton hypothesis disfavored at $TS = 121$, disfavoured at 11σ
Best silicon hypothesis disfavoured at $TS = 31$ (5.6σ)
The PT2011 Galactic magnetic field?

All Fe at source, $E^{-2.0} \times 10^{-5}/\text{Mpc}^3$, $B_{\text{Extragal}} = 10^{-9} G$

JF2012 Field

Same realization of the same hypothesis, through the PT2011 Field

The best fit hypothesis now is All Fe (at source), $E^{-2.0} \times 10^{-5}/\text{Mpc}^3$, $B_{\text{Extragal}} = 10^{-9} G$
Non standard candle sources

• Real sources have a luminosity distribution. Unknown.

• Assume gaussian in log(Luminosity), with variance = 0.4 (similar to X-Ray luminosities of QSOs in the XMM-XXL catalogue)

Best proton hypothesis still disfavored at 10.4 σ

From JF2012 Paper:

<table>
<thead>
<tr>
<th>Field</th>
<th>Best fit Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk</td>
<td>$b_1 = 10.81 \pm 2.33 \mu G$</td>
<td>field strengths at $r = 5$ kpc</td>
</tr>
<tr>
<td>component</td>
<td>$b_2 = 6.96 \pm 1.58 \mu G$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b_3 = 9.59 \pm 1.10 \mu G$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b_4 = 6.96 \pm 0.87 \mu G$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b_5 = 1.96 \pm 1.32 \mu G$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b_6 = 16.34 \pm 2.53 \mu G$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b_7 = 37.29 \pm 2.39 \mu G$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b_8 = 10.35 \pm 4.43 \mu G$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b_{\text{int}} = 7.63 \pm 1.39 \mu G$</td>
<td>field strength at $r < 5$ kpc</td>
</tr>
<tr>
<td></td>
<td>$z_0^{\text{disk}} = 0.61 \pm 0.04$ kpc</td>
<td>Gaussian scale height of disk</td>
</tr>
<tr>
<td>Halo</td>
<td>$B_0 = 4.68 \pm 1.39 \mu G$</td>
<td>field strength</td>
</tr>
<tr>
<td>component</td>
<td>$r_0 = 10.97 \pm 3.80$ kpc</td>
<td>exponential scale length</td>
</tr>
<tr>
<td></td>
<td>$z_0 = 2.84 \pm 1.30$ kpc</td>
<td>Gaussian scale height</td>
</tr>
<tr>
<td>Striation</td>
<td>$\beta = 1.36 \pm 0.36$</td>
<td>striated field $B_{\text{stri}}^2 = \beta B_{\text{reg}}^2$</td>
</tr>
</tbody>
</table>

But, to quote 1707.02339:

"This difference leads to a reduction of random field strength, by up to a factor of four in the disk, relative to JF12 [13]."

Random component of the field washes out structure, regular component maps it.
Conclusions

• The relative isotropy of UHECR arrival directions favours heavier compositions.

• Pure proton hypotheses are rejected at at least 4.6 sigma

• Best fit hypothesis is 100% Fe at source, favouring strong extragalactic magnetic fields (10^{-9}G) and low source density $(10^{-5} / \text{Mpc}^3)$.

• The results are not significantly different with the PT2011 Galactic magnetic field model, or by considering a wide spread in source luminosities