YOU ARE HERE!

35th ICRC 12-20 July 2017, Busan, South Korea
Observation of Protons and Light Nuclei with CALET

Analysis and Preliminary Results

Pier Simone Marrocchesi
Univ. of Siena and INFN Pisa

for the CALET Collaboration
ISS: a cosmic-ray observatory in Low Earth Orbit
<table>
<thead>
<tr>
<th>Experiment</th>
<th>$e^+</th>
<th>e^-$</th>
<th>$e^+ + e^-$</th>
<th>CR nuclei</th>
<th>charge</th>
<th>Gamma-ray</th>
<th>Type</th>
<th>Launch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(present data)</td>
<td>(Energy range)</td>
<td>(Energy range)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAMELA</td>
<td>$e^+ < 300$ GeV $e^- < 625$ GeV</td>
<td>1-700 GeV (3 TeV with cal)</td>
<td>1 GeV-1.2 TeV (extendable -> 2TeV)</td>
<td>1-8</td>
<td>-</td>
<td>SAT</td>
<td>2006 Jun 15</td>
<td></td>
</tr>
<tr>
<td>FERMI</td>
<td>-</td>
<td>7 GeV – 2 TeV</td>
<td>50 GeV-1 TeV</td>
<td>1</td>
<td>20 MeV – 300 GeV GRB 8 GeV – 35 MeV</td>
<td>SAT</td>
<td>2008 Nov 11</td>
<td></td>
</tr>
<tr>
<td>AMS-02</td>
<td>$e^+ < 500$ GeV $e^- < 700$ GeV</td>
<td>1 GV-1 TV (extendable)</td>
<td>1 GV-1.9 TV (extendable)</td>
<td>1-26 ++</td>
<td>1 GeV-1 TeV (calorimeter)</td>
<td>ISS</td>
<td>2011 May 16</td>
<td></td>
</tr>
<tr>
<td>NUCLEON</td>
<td>-</td>
<td>100 GeV-3 TeV</td>
<td>100 GeV-1 PeV</td>
<td>1-30</td>
<td>-</td>
<td>SAT</td>
<td>2014 Dec 26</td>
<td></td>
</tr>
<tr>
<td>CALET</td>
<td>-</td>
<td>1 GeV-20 TeV</td>
<td>10 GeV-1 PeV</td>
<td>1-40</td>
<td>10 GeV-10 TeV GRB 7-20 MeV</td>
<td>ISS</td>
<td>2015 Aug 19</td>
<td></td>
</tr>
<tr>
<td>DAMPE</td>
<td>-</td>
<td>10 GeV-10 TeV</td>
<td>50 GeV-500 TeV</td>
<td>1-20</td>
<td>5 GeV-10 TeV</td>
<td>SAT</td>
<td>2015 Dec 17</td>
<td></td>
</tr>
<tr>
<td>ISS-CREAM</td>
<td>-</td>
<td>100 GeV-10 TeV</td>
<td>1 TeV-1 PeV</td>
<td>1-28 ++</td>
<td>-</td>
<td>ISS</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>CSES</td>
<td>-</td>
<td>3-200 MeV</td>
<td>30-300 MeV</td>
<td>1</td>
<td>-</td>
<td>SAT</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>GAMMA-400</td>
<td>-</td>
<td>1 GeV-20 TeV</td>
<td>1 TeV-3 PeV</td>
<td>1-26</td>
<td>20 MeV-1 TeV</td>
<td>SAT</td>
<td>~2023-25</td>
<td></td>
</tr>
<tr>
<td>HERD</td>
<td>-</td>
<td>10(s) –10^4 GeV</td>
<td>up to PeV</td>
<td>TBD</td>
<td>10(s) –10^4 GeV</td>
<td>CSS</td>
<td>~2022-25</td>
<td></td>
</tr>
<tr>
<td>HELIX</td>
<td>-</td>
<td>-</td>
<td>< 10 GeV/n</td>
<td>light isotopes</td>
<td>-</td>
<td>LDB</td>
<td>proposal</td>
<td></td>
</tr>
<tr>
<td>HNX</td>
<td>-</td>
<td>-</td>
<td>~ GeV/n</td>
<td>-</td>
<td>-</td>
<td>SAT</td>
<td>proposal</td>
<td></td>
</tr>
<tr>
<td>GAPS</td>
<td>-</td>
<td>-</td>
<td>< 1 GeV/n</td>
<td>Anti-p, D</td>
<td>-</td>
<td>LDB</td>
<td>proposal</td>
<td></td>
</tr>
</tbody>
</table>
Geometric Factor:
- 1040 cm²sr for electron, proton
- 4000 cm²sr for ultra-heavy nuclei

• **ΔE/E:**
 - ~2% (>10 GeV) for e, gamma
 - ~30-35% for protons, nuclei

• **e/p separation:** ~10⁻⁵

• **Charge resolution:** 0.15 - 0.3 e

• **Angular resolution:**
 - 0.2° for gamma-rays > ~50 GeV
CALET main science goals

<table>
<thead>
<tr>
<th>Science Objectives</th>
<th>Observation Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nearby Cosmic-ray Sources</td>
<td>Electron spectrum in trans-TeV region</td>
</tr>
<tr>
<td>Dark Matter</td>
<td>Signatures in electron/gamma energy spectra in the 10 GeV – 10 TeV region</td>
</tr>
<tr>
<td>Origin and Acceleration of Cosmic Rays</td>
<td>p-Fe up to the multi-TeV region, Ultra Heavy Nuclei</td>
</tr>
<tr>
<td>Cosmic–Ray Propagation in the Galaxy</td>
<td>B/C ratio up to a few TeV /n</td>
</tr>
<tr>
<td>Solar Physics</td>
<td>Electron flux below 10 GeV</td>
</tr>
<tr>
<td>Gamma-ray Transients</td>
<td>Gamma-rays and X-rays in 7 keV – 20 MeV</td>
</tr>
</tbody>
</table>

CALET Detector Components

- **Charge Detector (CHD)**
 - (Charge Measurement Z=1-40)
 - Layer Number of Scifi Belts: 8 Layers × 2(X,Y)

- **Imaging Calorimeter (IMC)**
 - (Particle ID, Direction)
 - Total Thickness of Tungsten (W): 3 X_0, 0.1 λ

- **Total Absorption Calorimeter (TASC)**
 - (Energy Measurement, Particle ID)
 - PWO: 20mm x 20mm x 320mm
 - Total Depth of PWO: 27 X_0 (24 cm), 1.2 λ

CALET: a unique set of key instruments.

- **TASC**: a thick, homogeneous calorimeter allows to extend electron measurements into the TeV energy region with ~2% energy resolution.

- **IMC**: a high granularity (1mm) imaging pre-shower with tracking capabilities identifies the starting point of electromagnetic showers.

- **TASC+IMC** provide a strong rejection power $\sim 10^5$ to separate electrons from the abundant protons.

- **CHD**: a charge detector combined with multiple dE/dx samples from IMC identifies individual elements.

Standard Payload Size

- **Mass**: 612.8 kg
- **Power**: 507 W (Max)

Telemetry:

- Medium rate: 600 kbps
- Low rate: 50 kbps
CALET tracking takes advantage of the IMAGING capabilities of IMC thanks to its granularity of 1 mm with Sci-fibers readout individually.

Example: A multi-prong event due to an interaction of the primary particle in the CHD is very well imaged by the IMC.
Charge Measurement: Dynamic Range

- PMT+ CSA
- 64-anode PMT(HPK) + ASIC

1 ≤ Z ≤ 40
Fit of non-linear response of CHD layers vs Z^2

\[\frac{dl}{dx} = \frac{A(1-f)Z^\alpha}{1+B_s(1-f)Z^\alpha + GZ^\alpha} + A_f Z^\alpha \]

\(A_{CHDY} = 0.6032 \pm 0.004434 \)
\(f_{h,CHDY} = 0.4852 \pm 0.007406 \)
\(\alpha_{CHDY} = 2 \pm 0 \)
\(B_s,CHDY = 0.007638 \pm 0.0003257 \)
\(G_{CHDY} = 3.829e-06 \pm 7.285e-07 \)

\(\chi^2 / \text{ndf} = 2.329 / 7 \)

\(\chi^2 / \text{ndf} = 3.885 / 7 \)

R. Dwyer et al., NIM A242 171 (1985)
G. Tarle et al., NIM B6 504 (1985)
CHD charge resolution (2 layers combined) vs Z

![Graph showing CHD charge resolution vs Atomic number Z](image)
Fit of non-linear response of IMC fibers vs Z^2

\[
\frac{dl}{dx} = \frac{A(1-f_h)Z^2\alpha}{1 + B_S(1-f_h)Z^2\alpha + GZ^4\alpha^2 + A_f h Z^2\alpha}
\]

Halo model

R. Dwyer et al., NIM A242 171 (1985)
G. Tarle et al., NIM B6 504 (1985)

\[
\chi^2 / \text{ndf} = 7.226 / 7
\]

- $A = 0.5886 \pm 0.003515$
- $f_h = 0.1665 \pm 0.01276$
- $\alpha = 2 \pm 0$
- $B_S = 0.003106 \pm 5.773e-05$
- $G = 1.325e-06 \pm 3.308e-07$

[F. Stolzi]
IMC charge resolution vs Z

IMC single fibers have photoelectron yield/MIP about 1 order of magnitude lower than the CHD paddles, but due to multiple dE/dx sampling (up to 16 independent measurements) the charge resolution of IMC is adequate to identify light nuclei.

Example: B to C charge separation is $\sim 7\sigma$ with CHD and $\sim 5\sigma$ with IMC
Example of combined CHD + IMC charge identification of light elements from boron to neon
Energy Measurement: Dynamic Range & Calibrations

Calibrating full range (6 order of magnitude) is quite a challenge!

Gain Ratio Calibration

MIP Calibration

final stitching

R. Miyata et al., this conference
Y. Komiya et al., this conference

Proton Event Selection

1. Acceptance-A selection
2. Good Tracking (KF)
3. High Energy Trigger (HET)
4. Charge selection \(Z = 1 \)
5. Helium rejection cuts
6. Electron rejection cuts

Fiducial Acceptance-A

tracking (Kalman Filter) efficiency
charge selection
trigger efficiency
Example of combined CHD + IMC charge identification of proton and helium
Residual He background after rejection of $Z > 1$ nuclei
Energy unfolding

A standard procedure is to construct an energy overlap matrix A_{ij} from MC data:

- matrix element α_{ij} and normalization factor n_j are weighted with the MC event weight when the “MC truth” energy falling into bin i leads to a reconstructed energy in bin j

- the normalized matrix is defined as: $A_{ij} \equiv \frac{\alpha_{ij}}{n_j}$

We also define:

- $\epsilon_i =$ total efficiency in i-th bin

- $\beta_j =$ background contamination in j-th bin

- $M_j =$ number of events (weighted) measured in j-th bin (sum up to M_{tot} in energy range)

- $N_i =$ energy unfolded number of events (weighted) in i-th bin

Then:

$$N_i = \frac{1}{\epsilon_i} \sum_{j=1}^{n} A_{ij} (M_j - \beta_j M_{tot})$$
Residual electron contamination in proton sample

Preliminary analysis:

• Loose electron rejection cut: ratio of bottom TASC layer energy deposit / E_{TASC}
• Efficiency of the cut decreases with energy but contamination < 2%
• Electron background contamination can be further reduced by applying full e/p discrimination criteria.
Preliminary proton flux $E^{2.7}$ from 50 GeV to 22 TeV

- 15 months of observation from December 1st, 2015 to February 28th, 2017
- subset of total acceptance: acceptance A (fiducial) with $S\Omega = 416$ cm2 sr
- Assessment of the systematic errors: IN PROGRESS
Preliminary \(\frac{dN}{dE} \) for light elements: \textit{proton} to \textit{oxygen}
CALET is exploring the Multi-TeV region

- **elemental spectra & relative abundances,**
- **flux ratios** (secondary-to-primary, primary-to-primary, secondary-to-secondary)

CALET Energy reach in 5 years:

- **Proton** spectrum to \(\approx 900 \text{ TeV} \)
- **He** spectrum to \(\approx 400 \text{ TeV/n} \)
- Spectra of C, O, Ne, Mg, Si to \(\approx 20 \text{ TeV/n} \)
- **B/C** ratio to \(\approx 4 - 6 \text{ TeV/n} \)
- **Fe** spectrum to \(\approx 10 \text{ TeV/n} \)

<table>
<thead>
<tr>
<th></th>
<th>(\lambda_{\text{INT}})</th>
<th>(X_0) (normal incidence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREAM</td>
<td>(0.5 + 0.7)</td>
<td>20</td>
</tr>
<tr>
<td>CALET</td>
<td>1.3</td>
<td>30</td>
</tr>
<tr>
<td>AMS-02</td>
<td>0.5</td>
<td>17</td>
</tr>
<tr>
<td>DAMPE</td>
<td>1.6</td>
<td>31</td>
</tr>
</tbody>
</table>

Conclusions

✧ CALET has been delivering science data from the ISS during the last 20 months
✧ Total observation time 627 days with live time fraction to total time close to 84%
✧ Instrument performance and stability are excellent
✧ Single elements have been identified thanks to redundant charge measurements
✧ A preliminary analysis of proton and light nuclei has been presented
✧ The so far excellent performance of CALET and the outstanding quality of the data suggest that a 5-year observation period is likely to provide a wealth of new interesting results