Heavy isotopes cosmic ray spectrometer (HICRS) for the NUCLEON-2 mission

D. Karmanov, I. Kovalev, A. Kurganov, M. Panasyuk, A. Panov, D. Podorozhny, G. Sedov, L. Tkatchev, A. Turundaevskiy

Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow

35th International cosmic ray conference

2017
Isotope composition and scientific problems

- Local environment of the sun: diffusion coefficient, radioisotope clocks, local sources
- Isotopes anomalies in supernova explosions in a heavy elements-enriched medium
- Reverse shock wave cosmic ray acceleration
- Features of various nuclei injection process in cosmic ray acceleration
Existing data

- **LDEF**: $Z = 70-103$, 1-2 GeV/N, no isotope composition measurements
- **HEAO-3-C3**: $Z = 17-120$, no isotope composition measurements, low statistics in $Z=44-60$
- **SuperTIGER**: $Z = 10-60$, 2-3 GeV/N, no isotope composition measurements
- **ACE/CRIS**: isotope composition up to $Z=32$, $\sim 10^2$ MeV/N

Conclusion:
- $Z>40$: Low charge composition measurement statistics
- $Z>32$: No isotope composition data at all
- An experiment with exposure several orders of magnitude larger than of the CRIS ACE experiment is needed
The NUCLEON-2 Mission

- Satellite experiment project for direct measurements of cosmic rays for the investigation of charge and isotope composition
- Energy range: 0.1-1GeV/N (depends on the charge)
- Z range (charge composition): 7-94
- Z Range (isotope composition): 7-66
- Exposition time: 5 years
- E-dE telescope technique
Supposed NUCLEON-2 construction and arrangement

Single HICRS

To zenith
HICRS construction

Tracker strip detectors

2mm detectors
Expected results

<table>
<thead>
<tr>
<th>Nucleus, Z</th>
<th>(N)</th>
<th>Nucleus, Z</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe 26</td>
<td>(3 \times 10^7)</td>
<td>Zr 40</td>
<td>500</td>
</tr>
<tr>
<td>Co 27</td>
<td>(1.4 \times 10^5)</td>
<td>Nb 41</td>
<td>150</td>
</tr>
<tr>
<td>Ni 28</td>
<td>(1.1 \times 10^6)</td>
<td>Mo 42</td>
<td>230</td>
</tr>
<tr>
<td>Cu 29</td>
<td>(1.6 \times 10^4)</td>
<td>Ru 44</td>
<td>100</td>
</tr>
<tr>
<td>Zn 30</td>
<td>(1.6 \times 10^4)</td>
<td>Ag 47</td>
<td>140</td>
</tr>
<tr>
<td>Ga 31</td>
<td>2000</td>
<td>Cd 48</td>
<td>120</td>
</tr>
<tr>
<td>Ge 32</td>
<td>2300</td>
<td>Sn 50</td>
<td>120</td>
</tr>
<tr>
<td>As 33</td>
<td>350</td>
<td>Te 52</td>
<td>140</td>
</tr>
<tr>
<td>Se 34</td>
<td>1400</td>
<td>Xe 54</td>
<td>80</td>
</tr>
<tr>
<td>Br 35</td>
<td>200</td>
<td>Ba 56</td>
<td>180</td>
</tr>
<tr>
<td>Kr 36</td>
<td>830</td>
<td>Ce 58</td>
<td>50</td>
</tr>
<tr>
<td>Rb 37</td>
<td>250</td>
<td>Nd 60</td>
<td>40</td>
</tr>
<tr>
<td>Sr 38</td>
<td>1000</td>
<td>Dy 66</td>
<td>180</td>
</tr>
<tr>
<td>Y 39</td>
<td>250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph

- **NUCLEON-2**
- **ACE/CRIS**

Axis labels

- Atomic number
- Kinetic energy (MeV/N)
The prototype

32-channel 16-bit ADC

Trigger control board based on the FPGA devboard Spartan-3E
The prototype
CERN Test results: Z separation
Monte-carlo simulation model construction

Simulation in GEANT4, FLUKA and GEANT3
Isotopes separation in monte-carlo simulation
Isotopes separation in monte-carlo simulation (Mo, 0MeV noise)
Isotopes separation in monte-carlo simulation (Mo, 5MeV noise)
Isotopes separation in monte-carlo simulation (Sn, 0MeV noise)
Isotopes separation in monte-carlo simulation (Sn, 5MeV noise)
Conclusion

• The isotope spectra is one of the recent considerable interests in the field of cosmic rays origin physics and astrophysics in general
• No isotope composition data was measured above Z>32
• Statistics in the Z>40 range is low
• The NUCLEON-2 mission is proposed as a solution
• The monte-carlo simulation of the HICRS prototype and preliminary analysis methods confirm the proposed experiment’s isotope and charge measurement range and resolution
• The project is still in development and will be launched in the year ~2020-2022
Thanks for your attention!
Isotopes separation in monte-carlo simulation
Isotopes separation in monte-carlo simulation (Dy, 0MeV noise)
Isotopes separation in monte-carlo simulation (Dy, 5MeV noise)
Isotopes separation in monte-carlo simulation (Dy, 0MeV noise)
Isotopes separation in monte-carlo simulation (Dy, 5MeV noise)