Precise Measurements of Hydrogen and Helium Isotopes with BESS-Polar II

Nicolas PICOT-CLEMENTE for the BESS-Polar Collaboration

Institute for Physical Science and Technology
University of Maryland
The BESS-Polar Collaboration

K. Abea, H. Fukeb, S. Hainoc, T. Hamad, M. Hasegawac, A. Horikoshic, A. Itazakic, K.C. Kimc, T. Kumazawac, A. Kusumotoc, M.H. Leec, Y. Makidac, S. Matsudac, Y. Matsukawaa, K. Matsumotoc, J.W. Mitchelld, A.A. Moiseevd, J. Nishimurac, M. Nozakic, R. Oritoc, J.F. Ornesa, N. Picot-Clémente, K. Sakaid, M. Sasakid, E.S. Seoc, Y. Shikazec, R. Shinodac, R.E. Streitmatterd, J. Suzukic, Y. Takasugia, K. Takeuchic, K. Tanakac, N. Thakurd, T. Yamagamic, A. Yamamotoc, T. Yoshidab, K. Yoshimurac

aKobe University, Kobe, Hyogo 657-8501, Japan
bInstitute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210, Japan
cHigh Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
dNational Aeronautics and Space Administration, Goddard Space Flight Center (NASA/GPSC), Greenbelt, MD 20771, USA
eInstitute for Physical Science and technology (IPST), University of Maryland, College Park MD 20742, USA
fUniversity of Denver, Denver, CO 80208, USA
gThe University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
Objectives of the BESS Program

Precise Antiproton Measurements:
- If deviation observed from expected secondaries
 - Primordial Black Hole or Dark Matter

Search for Antinuclei:
- Antideuteron
- Antihelium
- Novel Origins
- Antimatter Asymmetry

Precise Measurements of H & He Spectra:
- Solar Modulation
- Secondary Production in ISM and Atmosphere

Precise Measurements of H & He Isotope Spectra:
- 1H, 4He are primaries,
- 2H, 3He are secondaries
- Secondary-to-Primary ratios (2H/1H, 2H/4He, 3He/4He)
 - Probe Galactic cosmic-ray propagation
 - Test if propagation history is the same for light and heavy elements

K. Abe et al., PRL 108, 051102, 2012
K. Abe et al., PRL 108, 131301, 2012

K. Abe et al., PRL 108, 051102, 2012
K. Abe et al., PRL 108, 131301, 2012
BESS Flights

9 Northern latitude balloon flights (~1 day) / 2 Antarctic flights

<table>
<thead>
<tr>
<th>BESS-Polar I</th>
<th>BESS-Polar II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch date</td>
<td>Dec. 13th, 2004</td>
</tr>
<tr>
<td>Observation time</td>
<td>8.5 days</td>
</tr>
<tr>
<td>Cosmic-ray observed</td>
<td>9 x 10^8 events</td>
</tr>
<tr>
<td>Flight altitude</td>
<td>37-39 km (5-4 g/cm^2)</td>
</tr>
</tbody>
</table>

5 times more events recorded with BESS-Polar II.

✿ **Significantly reduces statistical uncertainties** for H and He isotope flux measurements.
Determination of particle’s characteristics:

Velocity β: Use of top-bottom (or top-middle) TOFs
Resolution of \sim 2%.

Charge Z: From dE/dx in TOFs
Resolution of 0.4% at 1 GV. MDR of 240 GV.

Rigidity R: From gyroradius ρ in mag. field $B = 0.8$ T
$R = \frac{\rho}{B}$

Mass M: With $M = ZR\sqrt{1/\beta^2} - 1$

Kinetic energy per nucleon E_k:
$E_k = \sqrt{R^2Z^2 + M^2} - M$

The BESS-Polar instrument allows to measure hydrogen and helium isotopes from ~ 0.2 GeV/n to ~ 1.5 GeV/n.
Data Selection

- **Geometric Acceptance:**
 Events crossing top & bottom TOFs => 0.29 m2sr (GEANT4 MC simulations)
 2 malfunctioning PMTs were excluded out of 44.

- **Charge selection:** Selection of $Z=1$ or $Z=2$ particles with top TOF dE/dx.

 - **“Single-track” selection criteria:** Remove hadronic interacting events and ensure that particles are passing through the fiducial region of the JET.
 - 1 or 2 hits in top/bottom TOFs.
 - 1 reconstructed track.
 - 40 expected hits in JET.
 - Selection of $Z=1$ or $Z=2$ particles with LTOF dE/dx.
 - 1 hit in JET center.

 Cut efficiency of 53% for $Z=1$ and 44% for $Z=2$ particles.

- **“Quality” selection criteria:**
 Remove particles with poorly reconstructed tracks due to noise or detector limitations.
 - Good XY and YZ χ^2.
 - $\Delta R^{-1} < 0.015$.
 - Hits < 100 in JET.
 - $L_{XY} > 500$ mm.
 - $3/4$ Vernier pads in each IDC layer.
 - TOF hit position – track position < 75 mm.

 Cut efficiency of 95%.

* Efficiencies were estimated using $Z=1$ and $Z=2$ flight data sub-samples preselected with top TOF and JET. MC simulations were used for cross checking.

H & He Isotopes with BESS-Polar II
Isotope Separation

$Z=1$ particles with BESS-Polar II (flight data)

- High mass separation power.
- e^+, μ^+, π^+, κ^+ and 3H are mostly secondary particles produced in the atmosphere.
- Good mass resolution up to ~ 4 GV to separate isotopes.
- Reliable measurements, good agreement with theoretical lines, except at the lowest energies.

$Z=2$ particles with BESS-Polar II (flight data)

- Double Crystal ball functions are used for separation at the highest energies.

2H identification

$0.45 < E_k < 0.50$ GeV/n

$1.05 < E_k < 1.19$ GeV/n

3He identification

$0.45 < E_k < 0.50$ GeV/n

$1.05 < E_k < 1.19$ GeV/n
Flux Calculation:

Atmospheric Secondary Calculation:

Method from Papini et al., 1996.
Calculates secondaries considering 3 different physical processes: Ionization, attenuation and production.

The flux measured at TOI is used as starting point, and the Runge-Kutta method is employed to solve the equations numerically.

Atmospheric secondaries are negligible for 3He and 4He, above \sim0.4 GeV for 1H and above \sim0.8 GeV/n for 2H.
H and He Isotope CR Propagation with GALPROP

GALPROP: Realistic model that calculates CR propagation in the Galaxy. Incorporates as many processes and astrophysical data as possible to reproduce observations.

Use of modified version of GALPROP (Picot-Clemente et al., 2015):

The proton fusion process was implemented: \(p + p \rightarrow d + \pi^+ \)

This version uses also more accurate fragmentation cross sections at low energies (from Coste et al., 2012):

Interstellar secondary-to-primary ratios using the modified version compared to default version of GALPROP with the Reacceleration model

Fusion cross section Vs. proton kinetic energy (Lock and Measday, 1970)

Max at \(~600\) MeV
Hydrogen and Helium Isotope Fluxes

BESS-Polar II in good agreement in magnitude with PAMELA for 1H, 2H and 4He, as expected for same solar modulations.

BESS-Polar II fluxes higher than previous experiments, in agreement with NM data.

However: PAMELA 2H falling earlier than BESS-Polar II. PAMELA 3He at most 30% lower than BESS-Polar II.

GALPROP in general good agreement with same solar modulation parameter 450 MV with BESS-Polar isotope measurements.

GALPROP Model used:
- Diffusion $D_{xx} = \beta D_{0x}(\rho/\rho_0)^{\delta}$
- Reacceleration Model $D_{0xx} = 6.05 \times 10^{28}$ cm2 s$^{-1}$; $\delta=0.34$, Valfvén=34 km s$^{-1}$.
2H/3H BESS-Polar II consistent with BESS-93 and PAMELA.

3He/4He not much affected by Solar modulations.
=> BESS-Polar II consistent within uncertainties with AMS-01 and BESS-93.

PAMELA 3He/4He significantly lower than other measurements, except IMAX-92 data that were taken at Solar maximum.

The version of GALPROP that includes deuteron fusion production and more accurate production cross sections agrees well with BESS-Polar II hydrogen and helium isotope fluxes and ratios, with a same Solar modulation parameter of 450 MV.
Conclusion

BESS-Polar II gives the most precise measurements of hydrogen and helium isotope fluxes and ratios in the range $0.2 \text{ – } 1.5 \text{ GeV/n}$.

Measurements are consistent with previous data (except PAMELA ^3He) and with expectations for data taken during Solar minimum.

GALPROP was modified to be more suitable for hydrogen and helium cosmic-ray isotopes between 0.2 and 1.5 GeV/n:
- Implementation of proton fusion to deuteron (Acknowledgement to A. Strong).
- Adding more accurate low energy hydrogen and helium isotope cosmic-ray production cross-sections.

Although calculations still need improvement, predictions from GALPROP with reacceleration model fit well BESS-Polar II isotope measurements using one same Solar modulation parameter.

Hydrogen and helium isotope fluxes and ratios bring important information to better constrain cosmic-ray propagation models and parameters.