Status of the COSINE-100 experiment at Yangyang

8 low-radioactive NaI(Tl) crystals, 106 kg in total, submerged in 2 tons of liquid scintillator.

Physics run started Sept. 2016

Chang Hyon Ha

On behalf of the COSINE collaboration
Motivation: DAMA annual modulation signal, to be checked with independent measurements with the same NaI(Tl) target material.

Dark Matter Modulation 9.2 sigma

Background:
~1 count/day/kg/keV (dru=differential rate unit) above 2 keV

Modulation between 2-6 keV
Motivation: Right thing to do

- Every scientific results should be reproducible, independently.
- Apple-to-apple comparison is necessary.
- Large crystal detector experience helps, and community supports.

Phys. Rev. D 94, 122001
COSINE-100 experiment

Joint collaboration between KIMS and DM-Ice to search for dark matter interactions in NaI(Tl) scintillating crystals.

Chang Hyon Ha, Center for Underground Physics, IBS

ICRC2017, Busan, Jul. 12-20
Shields, Vetoes, and \(\mu \)-counters

Plastic Scintillators for CR Muons
3-cm thick, 37 panels

20-cm thick lead shielding

40-cm active Liquid Scintillator veto

3-cm thick Cu box

5-inch PMTs

3-inch PMTs

Nal crystals

Neutron Detector

Chang Hyon Ha, Center for Underground Physics, IBS

ICRC2017, Busan, Jul. 12-20
COSINE-100 detector setup
COSINE-100 Operation

Very stable operation
More than 85% of physics data.
95% are good runs.
Roughly 8 months data are collected

Crystal Trigger Rate (13 Hz)

Muon Detector Rate (12 Hz)

COSINE-100 Accumulated Data

Chang Hyon Ha, Center for Underground Physics, IBS
ICRC2017, Busan, Jul. 12-20
8 NaI(Tl) Crystals

<table>
<thead>
<tr>
<th>Crystal</th>
<th>Mass (kg)</th>
<th>Powder Type</th>
<th>40K (ppb)</th>
<th>238U (ppt)</th>
<th>232Th (ppt)</th>
<th>210Po (mBq/kg)</th>
<th>Light Yield (npe/keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal 1</td>
<td>8.26</td>
<td>Powder B</td>
<td>34.74±4.74</td>
<td><0.02</td>
<td>1.31±0.35</td>
<td>3.20±0.04</td>
<td>14.67±0.62</td>
</tr>
<tr>
<td>Crystal 2</td>
<td>9.15</td>
<td>Powder C</td>
<td>60.64±4.64</td>
<td><0.12</td>
<td><0.63</td>
<td>2.06±0.03</td>
<td>14.56±0.54</td>
</tr>
<tr>
<td>Crystal 3</td>
<td>9.16</td>
<td>WIMPSScint-II</td>
<td>34.34±3.10</td>
<td><0.04</td>
<td>0.44±0.19</td>
<td>0.76±0.02</td>
<td>15.75±0.76</td>
</tr>
<tr>
<td>Crystal 4</td>
<td>18.01</td>
<td>WIMPSScint-II</td>
<td>33.32±3.50</td>
<td><0.3</td>
<td><0.3</td>
<td>0.74±0.02</td>
<td>14.69±0.46</td>
</tr>
<tr>
<td>Crystal 5</td>
<td>18.28</td>
<td>Powder C</td>
<td>82.33±5.49</td>
<td>2.35±0.31</td>
<td>2.06±0.03</td>
<td>6.26±0.34</td>
<td></td>
</tr>
<tr>
<td>Crystal 6</td>
<td>12.5</td>
<td>WIMPSScint-III</td>
<td>16.79±2.46</td>
<td><0.018</td>
<td>0.56±0.19</td>
<td>1.52±0.02</td>
<td>14.52±0.51</td>
</tr>
<tr>
<td>Crystal 7</td>
<td>12.5</td>
<td>WIMPSScint-III</td>
<td>18.69±2.79</td>
<td><0.6</td>
<td><0.6</td>
<td>1.54±0.02</td>
<td>14.41±0.50</td>
</tr>
<tr>
<td>Crystal 8</td>
<td>18.28</td>
<td>Powder C</td>
<td>54.25±3.82</td>
<td><0.9</td>
<td><0.9</td>
<td>2.05±0.02</td>
<td>3.27±0.20</td>
</tr>
</tbody>
</table>

DAMA

| | <20 | 0.7 - 10 | 0.5 - 7.5 | <0.5 | 5.5 - 7.5 |

8 crystals with a total mass of 106 kg
Internal background components are measured.
Average light yield ~15 PE/keV
U/Th/K contaminations are below DAMA value.
210Po (210Pb) is still higher than DAMA.
Crystal-LS Coincidence

- 40K emits 1460 keV gamma with 3 keV Auger electron energy deposition in NaI crystal

- Tagging 1460 keV events with LS enables to veto 3 keV background events (70% tagging efficiency)
CR Muon detector system

4x10^{-7}/cm^2/s

Muon flux monitor.

CR muon induced crystal events are vetoed when muon pass through it.

Poster :: DM017, Hafizh Prihtiadi
Low Energy Spectrum (210Pb bkg.)

Internal components (crystal growing/raw material): 210Pb ($t_{1/2}=22$yr), U/Th
External components (handling of crystal/material assay): 210Pb on the surface
Cosmogenic components (excitation): 125I (59d), 109Cd-109 (460d), 3H (12yr)

2-4 dru (counts/day/kg/keV) between 2-6 keV
Currently, 10-15% discrepancy at the ROI

Goal <5%

Poster :: DM012, Pushparaj Adhikari
Expected Sensitivity for COSINE-100

*Assumed 2 dru or 4 dru flat backgrounds depending on crystals.

The sensitivity should be comparable with the DAMA allowed region.
COSINE-200 (Phase-II)

Goal: Reaching background lower than DAMA (1 dru). A factor two or more improvement is needed.

<table>
<thead>
<tr>
<th>Powder</th>
<th>39K (ppb)</th>
<th>208Pb (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astro grade</td>
<td>4.5</td>
<td><1.0</td>
</tr>
<tr>
<td>Crystal grade</td>
<td>45.1</td>
<td>6.0</td>
</tr>
<tr>
<td>Cian (99.5%)</td>
<td>180,000</td>
<td>1305</td>
</tr>
</tbody>
</table>

Powder purification (Recrystallization)

Crystal growing & Handling

Established a facility at our center

Powder purification (mass production facility for purification under construction)
Expected sensitivity for COSINE-200 (Phase-II)

*Assumed 1 dru flat backgrounds
Conclusion & Outlook

• KIMS and DM-Ice join forces (the COSINE-100 collaboration) to reproduce DAMA annual modulation using the same NaI(Tl) target material.

• COSINE-100 (Phase-I) is running with 106 kg of NaI(Tl) crystals.
 • CR muon tagging and liquid scintillator tagging.

• Physics run started on September 2016

• Initial performance of COSINE-100 is promising. 2 keV thres., 2-4 dru at ROI

• Expect to have DAMA-comparable sensitivity in ~2 years

• Continued R&D for higher purity crystals for COSINE-200 (Phase-II)
BACKUP
Environmental control/monitoring

- < 0.1°C temperature fluctuation on the crystals in LS
- more than 150 environmental variables are monitored online

Chang Hyon Ha, Center for Underground Physics, IBS

ICRC2017, Busan, Jul. 12-20
High Energy Spectrum

$U/Th/K/Cosmogenics$

Counts/day/keV/kg

Energy (keV)

Counts/day/keV/kg

Energy (keV)

100-2000 keV

data

sim
Liquid Scintillator for COSINE-100 is ready

Linear alkylbenzene (LAB) :
Good optical/radioactive properties

2,5-Diphenyloxazole (PPO) :
fluor, scintillator/wavelength shifter

p-bis-(o-methylstyryl)-benzene (bis-MSB) : wavelength shifter

Purification Setup
(Humidity removal)

This background of the liquid scintillator contributes negligible amount to the crystal (<0.01 dru)

3000 liters of liquid scintillators

Ready to be filled

U238 < 7 ppt
Th232 < 4 ppt

Rn222 daughters

Counts/Kg/day/keV

Energy (keV)

Chang Hyon Ha, Center for Underground Physics, IBS

ICRC2017, Busan, Jul. 12-20
Global NaI(Tl) efforts

- ANAIS @ Canfranc
- DAMA/LIBRA @ LNGS
- DAMA/LIBRA @ LNGS
- COSINE-100 @ Y2L
- PICO-LON @ Kamioka
- SABRE @ Stawell
- SABRE @ Stawell
- DM-Ice17 @ South Pole

Chang Hyon Ha, Center for Underground Physics, IBS
Event selection efficiency measured with 60Co Compton beta events

Above 2 keV, more than 90% selection efficiency

Hardware trigger threshold (0.14 keV)

Beta spectrum obtained by multiple-site events using 60Co source

Poster :: DM027, Hanwool Joo